A GIS-based high spatial resolution assessment of large-scale PV generation potential in China

Abstract

The achievement of temperature control target requires a low carbon transition of global energy structure. While China is actively promoting the implementation of large-scale PV generation technology, there is still a lack of scientific knowledge of the generation potential in China. To address this deficiency, this study builds a GIS-based model with 600 land conversion factors incorporated to accurately estimate the large-scale PV power generation potential in China. The results show a potential installed capacity of 1.41 × $10^5$ GW, corresponding to an annual power generation of 1.38874 × $10^{14}$ kWh or 21.4 times national electricity consumption in China 2016. If this potential were fully realized as a replacement for current fossil fuel-based power generation in China 2030, a reduction in China’s carbon intensity of 63–68% compared to 2005 would result, which is sufficient to meet China’s CO$_2$ emission reduction commitment. On a provincial level, while generation potential in Northwest and Inner Mongolia together account for 86% of the total, China’s eight economically developed coastal provinces only account for 1%. To achieve a maximum large-scale PV scenario in China 2030, the capacity of inter-regional transmission grids from Northwest region and Inner Mongolia to the regions with insufficient potential should reach an approximate 300 GW. Our study could provide decision-makers with the precise information on large-scale PV power generation map of China, and optimizing low carbon strategies and inter-regional power transmission for achieving sustainable development.

Publication
In Applied Energy

Related