
International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103539

1

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journal homepage: www.elsevier.com/locate/jag

Assessing spatiotemporal bikeability using multi-source geospatial big data:
A case study of Xiamen, China
Shaoqing Dai a,h, Wufan Zhao a,b,∗, Yanwen Wang a, Xiao Huang c, Zhidong Chen d, Jinghan Lei d,
Alfred Stein a, Peng Jia e,f,g,h

a Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514AE Enschede, The Netherlands
b Geomatics Section, Department of Civil Engineering, Faculty of Engineering Technology, KU Leuven, 9000 Gent, Belgium
c Department of Geosciences, University of Arkansas, Fayetteville, AR 72701, United States of America
d Xiamen Urban Planning and Design Institute, China
e School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
f Hubei Luojia Laboratory, Wuhan, China
g School of Public Health, Wuhan University, Wuhan, China
h International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China

A R T I C L E I N F O

Keywords:
Bike-sharing
Bikeability
Built environment
Multi-source data
Spatialtemporal

A B S T R A C T

This study focuses on the development of a new framework for evaluating bikeability in urban environments
with the aim of enhancing sustainable urban transportation planning. To close the research gap that
previous studies have disregarded the dynamic environmental factors and trajectory data, we propose a
framework that comprises four sub-indices: safety, comfort, accessibility, and vitality. Utilizing open-source
data, advanced deep neural networks, and GIS spatial analysis, the framework eliminates subjective evaluations
and is more efficient and comprehensive than prior methods. The experimental results on Xiamen, China,
demonstrate the effectiveness of the framework in identifying areas for improvement and enhancing cycling
mobility. The proposed framework provides a structured approach for evaluating bikeability in different
geographical contexts, making reproducing bikeability indices easier and more comprehensive to policymakers,
transportation planners, and environmental decision-makers.
1. Introduction

The urban mobility landscape is undergoing significant changes
as cities strive for a more sustainable future (Eren and Uz, 2020;
Steinacker et al., 2022). Active modes of transportation, including
walking, cycling, and public transit, offer numerous environmental,
health, and economic advantages compared to the use of private ve-
hicles (Ito and Biljecki, 2021; Gan et al., 2021; Wang et al., 2022).
Cycling, in particular, has gained widespread support as one of the
most sustainable, eco-friendly, and healthy modes of urban transporta-
tion (Huang et al., 2021, 2022b). Its positive attributes influence in-
dividuals’ travel behaviors, encouraging a shift towards active travel
modes. The introduction of bicycle-sharing systems has resulted in a
substantial increase in bicycle trips, rising from 5.5% to 11.6% among
36 cities in China (Long and Zhao, 2020). Investigating a framework for
evaluating the bike-friendliness of cities is crucial for enhancing urban
functionality and advancing sustainable transportation planning.

The scientific community has shown increasing interest in eval-
uating the level of support for walking and biking, referred to as
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‘walkability’ and ‘bikeability’, in communities (Pan et al., 2021; Yang
et al., 2021). The factors that drive bikeability in cities, such as envi-
ronmental consciousness, functional aspects like convenience and time
management, the need for exercise, or affordability, have been exten-
sively researched. Despite this, there is still no universally accepted
definition of ‘‘bikeability’’ (Hagen and Rynning, 2021). On one hand,
bikeability is seen as a gauge of a city’s bicycle network’s comfort,
accessibility, and convenience, used for comparing cities (Lowry et al.,
2012). On the other hand, it can be defined as the extent to which the
built environment promotes safe cycling and is conducive to it (Kellst-
edt et al., 2021), with more emphasis on the suitability of a particular
location for cycling. In this study, we concentrate on quantifying the
suitability of the built environment for bicycling by considering both
the factors that influence choosing the bicycle as a mode of trans-
portation and environmental factors. Bikeability is defined as a single
composite index that can be used to promote cycling based on multiple
perspectives: safety, comfort, accessibility, and vitality.
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The concept of the bikeability index has been extensively studied
using a range of indices from single to multiple sub-indices and utilizing
both questionnaires to quantitative evaluations based on multi-source
data (Chen et al., 2022; Codina et al., 2022). These studies are essential
for identifying areas for improvement and for demonstrating the need
for change to politicians and the public. Traditional questionnaire-
based evaluations use basic statistical models to produce subjective
evaluation indicators (Parkin et al., 2007; Wang et al., 2018; Caigang
et al., 2022). However, recent technological advancements, such as
computer vision and deep learning (Zhang et al., 2021; Tang et al.,
2023), combined with the availability of new data sources like street
view imagery and air quality, allow for a more detailed examination of
the built environment’s impact on mobility assessments. Studies have
shown a significant relationship between cycling behavior and various
built environment and contextual factors, including bikeway density,
bikeway width, bikeway exclusiveness, slopes, and the presence of
nearby green spaces (Parkin et al., 2007; Winters et al., 2010; Wang
et al., 2018; Hyland et al., 2018; Jia et al., 2021; Jia, 2021). However,
cycling is greatly influenced by dynamic environmental factors such
as weather and time of day, making the measurement of bikeability a
complex and spatially specific challenge that requires further attention.
Previous research has focused mainly on public bike systems with fixed
rental points, which restricts the freedom of cycling activities for resi-
dents and limits the accuracy of origin–destination spatial distribution
and cyclist path characteristics (Huang et al., 2022a). Additionally, the
relative newness of bike-sharing data and the lack of tools for mea-
suring the built environment at a fine granularity make it challenging
to perform large-scale investigations on spatial–temporal analysis and
validation of cycling route selection preferences (Zhang et al., 2019;
Dai et al., 2020).

Various studies have explored the factors influencing cycling behav-
iors and have developed a range of indicators to assess the bicycle-
friendly environment from various perspectives (Nielsen and Skov-
Petersen, 2018; Porter et al., 2020). Traditionally, indicators such as
speed, commercial facility density, and bus stop availability have been
used to measure accessibility and promote bikeability in cities (Hankey
et al., 2017; Eren and Uz, 2020). Additionally, weather conditions,
like wind speed, precipitation, and temperature, have been associated
with cycling safety and comfort (Eren and Uz, 2020). Recently, visual
elements such as sky and green spaces, analyzed through computer
vision techniques, have been applied in cycling assessments (Ito and
Biljecki, 2021). Despite these efforts, bikeability has often overlooked
personal exposure to air pollution during cycling, there is the mounting
evidence that links air pollution to negative health outcomes, including
cardiovascular and respiratory diseases, as well as cancer (Giallouros
et al., 2020; Zhao et al., 2018; Tran et al., 2020).

A rationale aim of this study to develop a cutting-edge bikeability
evaluation framework that considers dynamic climate, trajectory data,
and other important factors. The framework is used to analyze the
spatio-temporal dynamics of city-level streets and their impact on bike-
ability. To validate the findings, we cross-reference the analysis with
spatio-temporal hotspot statistics. Utilizing open-source data, such as
land use maps, road networks, and Google Street View (GSV) imagery,
we employ a combination of spatial statistics, deep neural network
(DNN) techniques (Zhu et al., 2022; Zhao et al., 2022, 2023), and
Geographic Information System (GIS) (Jia et al., 2017) tools to assess
the framework’s effectiveness. Xiamen, China, serves as the case study
for this research. The ultimate goal is to provide policymakers and
experts with a structured framework for evaluating bikeability in differ-
ent geographical contexts, making the process of replicating bikeability
index easier and more comprehensive.

2. Data and study area

2.1. Study area

Xiamen is a bustling coastal city located in Fujian Province, China
2

and is considered a special economic zone of national significance
(Fig. 1). With its status as a major port and tourist destination, Xiamen
serves as a central hub in the region. The city encompasses six districts
and spans an area of 1,700.61 km2, boasting a population of over 5.28

illion as of 2021. Given its extensive bike-sharing trajectory coverage,
iamen Island was selected as the focal point of this study.

.2. Data and preprocessing

We made use of various big data sources, including (1) Bike-sharing
rajectory data collected during the morning hours of 6:00 to 10:00
.m. from December 21 to 25th, 2020 (provided by the Digital China
nnovation Contest 2021, https://data.xm.gov.cn/contest-series/digit-
hina-2021). (2) Digital Elevation Model (DEM) data from Geospa-
ial Data Cloud website (http://www.gscloud.cn/). (3) Mobile phone
ignaling data to estimate population volume (provided by China Uni-
om). (4) Point of Interest data related to food, life services, interests,
nd shopping from Baidu Map. (5) Street view imagery from Baidu
ap. (6) Air quality monitoring data from the ecology and environ-
ent agency for the period of December 21 to 25th. (7) European

eanalysis version 5(ERA5) Climate datasets from the European Centre
or Medium-Range Weather Forecasts and Copernicus(https://doi.org/
0.24381/cds.adbb2d47). All data were collected during the morning
ours of 6:00 to 10:00 a.m. from December 21 to 25th, 2020.

In this study, we carried out the pre-processing of multiple sources
f spatiotemporal big data. The following measures were taken:

1. Filtering and processing of road segments to determine bike-
ability. This involved performing a topology check and splitting
segments longer than 500 m and shorter than 200 m (resulting
in 2,854 segments in total).

2. Collection and analysis of mobile phone signaling data to esti-
mate population density in 250 × 250 m grids for the specified
time period.

3. Processing of bike-sharing trajectory data. This involved filtering
trajectories that were within Xiamen Island, at least 1 min long
and over 100 m in length. The average speed of each trajectory
was calculated as the sum of the displacement between points
divided by the time difference between the points. The bike-
sharing trajectory was then matched with road segments, and
the number of trajectories and average speed were determined
for each segment.

4. Collection and processing of air quality station monitoring data
and climate data, which were formatted for spatial interpolation.

5. Sampling of points from each road segment generated in step 1,
followed by downloading of the corresponding 360◦ street view
imagery.

3. Method

A rationale aim of this study was to understand the factors that
impact the behavior of residents’ cycling activities using machine learn-
ing, deep learning, and trajectory mining algorithms on multi-sources
spatiotemporal big data. The data sources utilized include bike-sharing
trajectory, DEM, mobile phone signaling data, points of interest (POI),
street view imagery, air quality station monitoring data, and ERA5
climate datasets. Using road network segments as the study units, we
build an evaluation system for the traffic friendliness of active transport
systems and evaluate the bikeability of our target city, i.e., Xiamen.

3.1. Proposed bikeability framework

We construct the bikeability evaluation framework by combin-
ing the collected multi-source spatio-temporal big data (Fig. 2). The
proposed bikeability evaluation framework contains four subindexes,
i.e., safety, comfort, accessibility, and vitality, and thirteen influencing
indicators, i.e., wind speed, road slope, precipitation, temperature, sky

https://data.xm.gov.cn/contest-series/digit-china-2021
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https://data.xm.gov.cn/contest-series/digit-china-2021
http://www.gscloud.cn/
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47


International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103539S. Dai et al.
Fig. 1. Study area of Xiamen island.
view index, green view index, trajectory sinuosity, air pollution, aver-
age speed of trajectory, public transportation accessibility, commercial
accessibility, number of trajectory and crowdedness. All indicators used
in our framework belong to objective and quantitative measurements.

Safety is evaluated based on three factors: wind speed, road slope,
and precipitation. Strong winds can make riding more challenging,
while steep slopes increase the risk of accidents while descending.
Precipitation, such as rain or snow, can make the roads slippery and
reduce visibility, which in turn affects the safety and comfort of riders.

Comfort is determined by five factors: temperature, sky view index,
green view index, sinuosity, and air pollution. High or low tempera-
tures, both during summer and winter, can cause discomfort for riders.
The Sky view index and green view index assess a rider’s subjective
perception of the sky and vegetation they observe during the ride,
with a higher ratio resulting in increased comfort. The sinuosity of
the cycling route and air pollution, particularly PM2.5, can negatively
impact the comfort and health of riders.

Accessibility is evaluated by three factors: average speed of trajec-
tory, public transportation accessibility, and commercial accessibility.
A slower average cycling speed can indicate a less friendly route
for cyclists, while proximity to public transportation and commercial
facilities can increase the convenience of cycling. The number of POIs
is used as an indicator of commercial accessibility.

Vitality is focused on the purpose of riding and is determined by two
factors: the number of trajectories and crowdedness. A higher number
of trajectories and more crowdedness indicate a higher utilization rate
of shared bikes and more cyclists on the road, reflecting a more friendly
and vibrant cycling environment. The number of mobile phone signals
is used as an indicator representing crowdedness.

3.2. Subindexes and bikeability index calculation

• Safety: wind speed and precipitation were downscaled to 100 m
resolution using the 0.1◦ ERA reanalysis data via using spatial
3

interpolation. The slope was calculated from the STRM digital
elevation model with a 30 m resolution. The spatial interpolation
methods applied include thin plate splines (TPS) and Ordinary
Kriging (OK). TPS is a 2-D interpolation algorithm that uses
longitude, latitude, and climate indices, such as horizontal and
vertical wind speed at 10 m and precipitation, to minimize a
multivariate function based on a coefficient of relaxation (𝜆), an
integer, and a series of positive weights. OK is a geostatistics
method that converts the spatial interpolation into a variance
minimization optimization problem and solves for the weights
between observed points and target locations.

• Comfort: Temperature and air pollution were downscaled to
100 m using a combination of ERA reanalysis data and air pollu-
tion monitoring site measurements. Spatial interpolation was used
to obtain these values. The sky view index and green view index
were calculated from street view imagery using the pre-trained
deep learning model Deeplab v3+ (Chen et al., 2018) (Fig. 3). The
calculation of sky view factors and green view index, i.e., the ratio
of the number of pixels for a specific object to the total number
of pixels, follows.

𝐵𝐸𝑉 𝐼𝑡 =
Area 𝑡,𝑥

Area 𝑡
× 100% (1)

where 𝐵𝐸𝑉 𝐼𝑡 represents the sky view factors or green view
index of street view imagery at the sampling locations (𝑡 =
1, 2,… , 𝑛). Area 𝑡,x represents the number of pixels for the built
environmental factors 𝑥 (𝑥 represents green space or sky) of street
view imagery at the sampling locations. 𝐴𝑟𝑒𝑎𝑡 represents the total
number of pixels of street view imagery at the sampling locations.
Sinuosity, defined as the ratio between the actual travel distance
and the direct distance, represents the bending degree of the
object in the length direction. Our study regards the bike-sharing
trajectories as the investigating object. The sinuosity is defined
as the ratio of the driving distance and the straight-line distance
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Fig. 2. The proposed bikeability framework.
Fig. 3. Street view imagery semantic segmentation process, revised from Chen et al. (2018).
from the origin to the destination:

Sinuosity =
Driving Distance

√

(

𝑥2 − 𝑥1
)2 +

(

𝑦2 − 𝑦1
)2

(2)

where, (𝑥1, 𝑦1) and (𝑥2, 𝑦2) denote the coordinate of the origin and
the destination.

• Accessibility: Accessibility is measured using three indicators:
average speed of bike trajectories, public transport accessibility,
and commercial accessibility. The average speed is calculated
as the length of the bike trip divided by its duration. Public
transport accessibility is assessed by determining the shortest
distance from the mid-point of a road segment to the nearest
public transport stop, providing an indication of the convenience
of using public transportation for traveling from one place to
another. Commercial accessibility is evaluated by counting the
density of commercial facilities along the road segments within a
4

50 m range on both sides. A high number of commercial facilities
is vital for keeping an area bustling and thriving. The locations of
these commercial facilities are extracted using POI data.

• Vitality: Vitality is evaluated based on two factors: the number
of bike-sharing trajectories and crowdedness. To determine the
number of bike-sharing trajectories, we count the number of bikes
used within each road segment. To evaluate crowdedness, we an-
alyze mobile phone signaling data using a non-parametric method
of kernel density estimation. This method helps in identifying
spatial clusters and hotspots of residential travel activity in a
given space.

To measure bikeability, we create a spatiotemporal database that
integrates multi-source spatiotemporal big data and road network seg-
ments. We combine all of the relevant indicators and assigning weights
to each using principal component analysis (PCA) (Wold et al., 1987), a
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Fig. 4. The figures show the daily safety, comfort, accessibility, and vitality of Xiamen Island from top row to bottom row, where from left column to right column respectively
represent the dates from 21 to 25th.
widely used method for data dimensionality reduction. The weighting
process of key indicators to form a composite index can be achieved
through various methods, like PCA, factor analysis, data envelopment
analysis (DEA), benefit of the doubt (BoD), Delphi method, and analytic
hierarchy process (AHP). Delphi and AHP rely on expert knowledge
and are subjective in nature (Ran et al., 2021). DEA and BoD focus
on measuring efficiencies of decision-making units and may emphasize
well-performing indicators, but they may not cover the entire evalua-
tion system of bikeability (Lemke and Bastini, 2020). In comparison,
PCA is an objective, bottom-up, and data-driven weighted algorithm
with a solid mathematical foundation (Yu et al., 2013). It allows for di-
mensionality reduction of big data, capturing the maximum amount of
variance present and generating uncorrelated components. Therefore,
we used PCA to evaluate bikeability based on spatial–temporal geospa-
tial big data. The square root of corresponding eigenvalues namely
loadings in PCA will be assigned as weighted coefficients, following
the works by Bao et al. (2022) and Liu et al. (2022). The number of
extracted components is four, and the degree of explained variance
reaches 69.6%. The oblique transformation is variance maximum. The
formula for the bikeability index follows:

Bikeability = 𝑎1 ⋅ 𝑥1 + 𝑎2 ⋅ 𝑥2 +⋯ + 𝑎13 ⋅ 𝑥13 (3)

where 𝑎1, 𝑎2,… , 𝑎13 represent the weight of each indicator generated
by PCA. 𝑥1, 𝑥2,… , 𝑥13 represent the 𝑖th normalized indicators (𝑖 =
1, 2,…… , 13) such as wind speed, slope, . . . . . . , crowdedness.

4. Results

4.1. Spatiotemporal analysis of subindexes

We first present and discuss the results of four subindexes across
Xiamen Island on a daily basis from December 21 to 25th, 2020 (Fig. 4).
5

The variability of the safety subindex is demonstrated in Fig. 4
first row, which highlights the changes in safety over time. On the
21st, 22nd, and 25th, the safety values are relatively high at 0.092,
0.081, and 0.084, respectively. However, the safety value on the 23rd
decreases significantly to −0.024 due to the rainfall on that day. This
shift in weather conditions caused the safety subindex to change from a
positive to a negative value. The safety returned to its normal range on
the 24th when the rain stopped, resulting in a positive value of 0.061.
When examining the spatial aspect, on the non-rainy days (21st, 22nd,
and 25th), around 20% of road sections were found to have a safety
subindex greater than 0.1 (80% quantile), and these sections remained
consistent across different dates ( Table 1).

As depicted in the second row of Fig. 4, the comfort subindex
exhibits noticeable fluctuations over the course of five days. The values
decline gradually from 0.103 on the 21st to 0.085 on the 24th. How-
ever, on the 25th, there is a sharp drop to 0.060. A closer examination
of the indicators used to compose the comfort subindex reveals that the
average concentration of PM2.5 on the 25th exceeded 30 μg m−3, which
was much higher compared to the other days. Additionally, the average
temperature on the 25th was also the lowest, which further impacted
the comfort subindex value.

In contrast to the safety and comfort subindexes, the accessibility
subindex showed minimal variations over the five-days study period,
as shown in Fig. 4 third row. This is likely due to the study period con-
sisting of working days, which led to consistent commuting conditions
for cyclists every day. Two of the key indicators used to compose the
accessibility subindex, bus traffic and POI density, remained constant.
The only varying indicator, average cycling speed, was primarily influ-
enced by road conditions, such as smoothness and traffic, rather than
time. For instance, roads that were smooth and had less traffic generally
had higher average cycling speeds, regardless of the day of the week.
As a result, the values of the accessibility subindex remained relatively
stable throughout the study period.
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Table 1
Descriptive statistics of 13 indicators of the bikeability index (N=57080).

Index Indicators Maximum Minimum Mean Standard deviation

Safety Wind speed (m s−1) 7.78 1.35 5.02 1.83
Slope 25.57 0.00 3.68 2.50
Precipitation (mm) 0.01 0 0.002 0.004

Comfort Temperature (◦C) 20.74 15.73 17.95 1.19
Sky view index 0.64 0.00 0.16 0.15
Green view index 0.48 0.00 0.05 0.09
Sinuosity 0.98 0.00 0.26 0.19
PM2.5 (μg m−3) 32.36 9.18 18.13 8.48

Accessibility Average speed (m s−1) 49.51 0.00 7.33 4.48
Public transport 4,128.33 0.05 330.41 403.44
Commercial 149 0.00 7.13 10.87

Vitality Number of trajectories 2,230 0.00 26.59 50.54
Crowdedness 21,941 0.00 4,146 2,994.18
Table 2
Weighted coefficients of 13 indicators of the bikeability index.

Variables Indicators Weighted coefficients

𝑥1 Wind speed (m s−1) 0.097
𝑥2 Slope 0.149
𝑥3 Precipitation (mm) −0.102
𝑥4 Temperature (◦C) 0.128
𝑥5 Sky view index 0.038
𝑥6 Green view index 0.138
𝑥7 Sinuosity 0.073
𝑥8 PM2.5 (μg m−3) −0.069
𝑥9 Average speed (m s−1) 0.104
𝑥10 Public transport 0.124
𝑥11 Commercial 0.075
𝑥12 Number of trajectories 0.168
𝑥13 Crowdedness 0.077

The vitality subindex is demonstrated in the last row of Fig. 4.
nlike the safety and comfort subindexes, it only shows a notable

luctuation on one day, the 23rd, with a decrease to 0.013. On all
he other days, the value of the vitality subindex remained constant at
.015. This stability is likely due to consistent commuting patterns on
eekdays. However, on the 23rd, the rainy weather caused a reduction

n the number of cycling trips from 300,000 to 120,000, resulting in a
ecrease in the vitality subindex.

.2. Spatial and temporal analysis of the bikeability index

The calculation of the bikeability index requires assigning appro-
riate weights to each indicators. To determine these weights, we
erformed a principal component analysis (PCA) on the 13 indica-
ors. The PCA resulted in 6 components, providing a balance between

minimal number of components and reliable explained variance.
he relationships between components and indicators are displayed in
ig. 5. The final weighted coefficients for calculating the bikeability
ndex using the weighted indicators are derived as follows 2.

As per the method outlined above, the bikeability index for the
tudy area and period has been generated. It is a dynamic index that
akes into account both the spatial and temporal aspects, with road
egments as its spatial unit and minutes as its temporal unit. Fig. 6
rovides an illustration of the dynamic trend of the bikeability index.
ig. 6(a) displays a map of the index (number of trajectories) on the
4th, between 6:00 a.m. and 9:00 a.m. Fig. 6(b) showcases the time
eries of the bikeability index in relation to the number of shared
icycle tracks on Hubin Road.

The spatial distribution of the bikeability index is shown in Fig. 7,
hich presents an averaged value map of Xiamen Island. The re-
ions with high bikeability index values are mainly located around
ubin Nanlu and Hubin Beilu, which serve as key roads for public

ransportation and are home to numerous bus stations. Furthermore,
6

hese areas are surrounded by a variety of commercial and residential
communities. This results in a high accessibility subindex as well as
high levels of crowdedness, contributing to a high value of the vitality
subindex. The combination of these high subindexes values ultimately
results in a high overall bikeability index in this region.

The temporal distribution of the bikeability index shows a fluc-
tuation throughout the study period, as seen in Fig. 8. On the 21st
and 22nd, the average values were recorded as 0.236 and 0.233,
respectively. On the 23rd, however, there was a noticeable drop in
the bikeability index value, reaching a low of 0.098. Despite this
decrease, the values rebounded to 0.188 and 0.185 on the 24th and
25th, respectively. This fluctuation in the bikeability index is mainly
due to a rainfall event that occurred in Xiamen on the 23rd. The rainy
conditions led to a significant decrease in the safety subindex, which
in turn decreased the overall value of the bikeability index.

The hourly pattern of the bikeability index reveals a different trend
compared to the daily change (Fig. 8). As seen in Fig. 8, the hourly
bikeability index values exhibit much less fluctuation. The value was
recorded as 0.184 at 6:00 a.m. and then gradually increased, reaching
its peak at 7:00 a.m. and 8:00 a.m. with values of 0.198 and 0.195,
respectively. This increase was mainly due to an increase in the vitality
subindex, as more people were using shared bicycles between 7:00
a.m. and 8:00 a.m. on working days. However, at 9:00 a.m., the value
dropped to its lowest point at 0.17.

4.3. Hotspot area validation

To validate the bikeability index, we analyzed the spatiotemporal
patterns of shared bicycle cycling trajectories to determine if they align
with general expectations. Our approach included a hotspot analysis of
15-minute intervals of data from the 21st, using a grid with a 165 × 165
m spatial resolution (Fig. 9). The area surrounding Xiamen Island was
a continuous cold spot, indicating low levels of cycling activity in the
morning. The northern and eastern areas of the island were oscillating
cold spots, indicating low levels of cycling activity during the morning
but turned into hop spots during rush hour when traffic demand is
high. The central and eastern part of the island was an oscillating hot
spot, showing high levels of cycling activity throughout most of the
morning, with a few exceptions at 6:00 a.m. or 10:00 a.m. Surrounded
by oscillating hot spots, three consecutive hot spots had a high level of
cycling activity throughout the morning.

To further validate our proposed index, we conducted a case study
analysis in the central area of Xiamen CR, which is the middle con-
tinuous hotspot area. The location of this case study is the shared
bicycle cycling hotspot at the intersection of Hubin Nanlu and Hu-
bin Donglu, near the commercial center of Xiamen Wanxiangcheng,
between 8:00–9:00 a.m. on December 21, 2020, as shown in Fig. 10.

The study area is centered around the Huarun commercial center,
surrounded by a large residential area. During the morning hours, a
substantial amount of shared bicycles are used in this region, con-
tributing to a relatively high bikeability index. This highlights the
significance of cycling routes in determining the level of bikeability.
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Fig. 5. The PCA result for 13 indicators indicates correspondence between principal components and original indicators.
Fig. 6. (a) Number of trajectories of Xiamen on the 25th at 6:00, 7:00, 8:00, and 9:00 a.m., (b) different time periods of the number of shared bicycle tracks.
The current cycling infrastructure falls short of supporting high-
friendly cycling routes. For example, the road section near Hubin
Middle School, which is located in a residential area and has a high
demand for commuting, features a high density of shared bicycle stops,
catering, shopping, and life services. The natural environment also
favors cycling with low slopes, moderate wind speed, low precipitation,
suitable temperature, overcast weather, and good air quality. Despite
these favorable conditions, this section is congested during the morning
rush hour due to a narrow non-motorized lane, slow average speed, and
high volume of people commuting and going to school, resulting in low
bikeability in this section despite high cycling activity.

Furthermore, the demand for shared bicycles in hot spot regions is
much higher, underscoring the importance of ensuring the availability
of bicycles and easy accessibility. As shown in the figure, most road
sections in the hot spot area have high densities of parking spots.
However, there is a shortage of parking spots on the east side of Huarun
Center, leading to a concentration of cyclists in other areas, causing
congestion and potentially affecting commuting efficiency.
7

This case study showcases how our bikeability index takes into
account the purpose of cycling and reflects cyclists’ preferred routes.
Nonetheless, there remain disparities between the actual infrastructure,
preferred routes, and regional conditions. By integrating the index sys-
tem with real-time data, it is possible to provide suggestions for enhanc-
ing regional cycling conditions. The findings of this research can guide
management departments and shared bicycle providers to improve
facilities and offer optimal route planning for cyclists to avoid conges-
tion and overcome difficulties in finding available bicycles. In conclu-
sion, the bikeability index can provide comprehensive decision-making
recommendations and advance the development of cycling-friendly
cities.

5. Discussion

In the following section, we delve into the advantages, conse-
quences, and practical implications of our framework and its product.
We conclude by highlighting the potential of our framework to advance
sustainability in urban planning and transportation management.
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Fig. 7. Average bikeability of Xiamen Island on December 21th, 22th, 23th, 24th, 25th, 2020, the roads highlighted in red indicate lower levels of bikeability, whereas those in
green indicate higher levels of bikeability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Average bikeability of Xiamen Island at 6:00, 7:00, 8:00, and 9:00 a.m., the roads highlighted in red indicate lower levels of bikeability, whereas those in green indicate
higher levels of bikeability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Spatiotemporal hotspot analysis of Xiamen Island.
Fig. 10. Case study field validation.
5.1. Influence of indicators

• Natural environmental factors: Natural environmental factors
play a crucial role in determining cycling friendliness, and al-
though their spatial distribution did not vary significantly, the
temporal distribution had a significant impact. Analysis of the
day-to-day distribution of cycling friendliness revealed that even
in the absence of extreme weather events, weather conditions
affected cycling friendliness. For instance, on December 23, the
average ride friendliness value was lower compared to other
dates, attributed to rainfall.

• Built environment factors: Built environment factors, including
commercial accessibility, public transportation accessibility, and
the distribution of jobs and residences, also play a significant
role in determining commuter friendliness. In this study, despite
the smooth road and gentle slope of the traffic circle, the sparse
distribution of commercial facilities, long distance of public trans-
portation stops, and a small number of jobs and residences led to
lower cycling activity during the morning peak period, which was
identified as less friendly in the evaluation model.
9

5.2. Innovation and limitations

• Fusion of multi-source geospatial big data: The fusion of multi-
source geospatial big data enables a more comprehensive evalua-
tion of cycling friendliness. This includes the analysis of spatio-
temporal data from sources such as street view imagery, POI,
DEM, and air quality. The use of dynamic cycling trajectories pro-
vides insight into the path choices of residents, which improves
the problem of sampling bias and allows for multi-source data fu-
sion research. However, the time registration of multi-source data
may not be entirely consistent and may not represent the entire
research area accurately. Therefore, future studies should con-
sider employing field observations and alternative data sources
to validate the findings of this study (Jia et al., 2019).

• Refinement of research methods and scales: This study em-
ploys a combination of GIS spatial analysis, statistical analy-
sis, deep learning techniques, and trajectory mining algorithms,
which can effectively integrate various types of multi-source data
and enhance the depth and breadth of research insights. The study
provides an extensive analysis of the road network, offering an
intuitive visual representation of the cycling-friendliness of urban
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roads. This approach enhances the scalability of the study, en-
abling a more comprehensive analysis of the cycling friendliness
of urban areas.

While this study provides valuable insights into the evaluation of
ikeability, there are several limitations to consider. First, the con-
eptualization of ‘‘bikeability’’ as a distinct metric bridging the built
nvironment and cycling behavior is not universally established in
cademia. It is worth noting that Codina et al. Fosgerau et al. and
eggiani et al. offer varied definitions (Codina et al., 2022; Fosgerau
t al., 2023; Reggiani et al., 2022). Considering such discrepancies,
e adopted an empirically derived definition. Here, ‘‘bikeability’’ en-

ompasses four sub-indices and thirteen indicators, all of which were
eticulously gauged and validated within the context of our local

tudy area, leveraging multi-source geospatial data. While this index is
ptly tailored for various practical contexts, we recognize its intrinsic
onstraints in fully encompassing the breadth of bikeability assessment.
econd, the study does not yet examine the inter-correlation among
ndividual indicators. It requires further research to fully understand
he individual contribution of each subindex to a comprehensive con-
eptualization of bikeability. Bikeability as defined by the weighted
oefficients obtained from a PCA provides a comprehensive and ob-
ective way to relate the different factors (Bao et al., 2022; Liu et al.,
022). Third, we realize that the study so far does not fully delve into
he contribution of each specific indicator to the characteristics of the
patial and temporal distribution. We plan to address this issue in future
tudies. Fourth, we acknowledge that certain indicators employed in
ur bikeability assessment are not entirely accessible. Notably, indica-
ors that merge cycling-related data with population trends could offer
ignificant insights. In subsequent research, we intend to incorporate
roader and more readily accessible indicators, while also delving
eeper into the impact of specific indicators on intervention strategies.
ossible ways to do so could be to use different weighing algorithms
ncluding, AHP, Delphi, DEA, machine learning, and deep learning and
o consider a hierarchical setting of weights (Gdoura et al., 2015; Xie
t al., 2017; Hong and Mwakalonge, 2020; Ki et al., 2023). This should
hen result in policy recommendations also for other cities.

.3. Implications for policy and practice

The variability in the bikeability index across different segments
resents an opportunity for transportation planners to enhance cycling
nfrastructure. Monitoring the spatiotemporal dynamics of bikeability
an help identify potential environmental or infrastructure changes and
heir impact on the community’s level of bikeability. To ensure the
elevance of the cycling friendliness index, case studies that incorporate
dditional infrastructure data are necessary for local comparison of
ikeability results, enabling the proposal of landable solutions for
arying infrastructure. For instance, the fusion analysis of parking
pot electronic fence data and bikeability could expose discrepancies
etween regional cycling infrastructure and cyclists’ preferences, pro-
iding actionable recommendations to government departments and
uiding users to cycle in a more bike-friendly manner.

. Conclusion

We have developed a new framework for quantifying bikeability
hat considers dynamic environmental factors, which were previously
verlooked in existing research. The proposed framework comprises
our sub-indices: safety, comfort, accessibility, and vitality, and em-
loys open-source data, advanced deep neural network and GIS spatial
nalysis, which eliminate subjective evaluations and are less time-
onsuming than prior methods. The resulting comprehensive spatiotem-
oral assessment of the bikeability/cycling index can facilitate the
10

onstruction of sustainable cycling infrastructure.
We used Xiamen as a case study to validate our approach. Our
study’s outcomes demonstrate that Xiahe-South Hubin Road, Software
Industrial Parks, Huli Innovation Parks, and Lujiang Business District in
Xiamen’s central business district are more bike-friendly, as evidenced
by their elevated safety, accessibility, and vitality, resulting in higher
bikeability scores. Nonetheless, traffic congestion, which lowers cycling
speed and actual bikeability, is a potential downside of the higher
vitality levels. To enhance cycling mobility, air quality, green spaces,
and public transportation facilities need to be enhanced in areas with
lower bikeability scores.

Our novel bikeability framework employs readily comprehensive
spatially-detailed data, making it easily implementable on a broad
scale. Urban planners, transportation policymakers, and environmental
decision-makers can objectively assess bikeability and design compre-
hensive cycling infrastructure using the developed bikeability index.
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