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Abstract: Accurate assessments of the historical and current status of eco-environmental quality
(EEQ) are essential for governments to have a comprehensive understanding of regional ecological
conditions, formulate scientific policies, and achieve the United Nations Sustainable Development
Goals (SDGs). While various approaches to EEQ monitoring exist, they each have limitations and
cannot be used universally. Moreover, previous studies lack detailed examinations of EEQ dynamics
and its driving factors at national and local levels. Therefore, this study utilized a remote sensing
ecological index (RSEI) to assess the EEQ of China from 2001 to 2021. Additionally, an emerging
hot-spot analysis was conducted to study the spatial and temporal dynamics of the EEQ of China.
The degree of influence of eight major drivers affecting EEQ was evaluated by a GeoDetector model.
The results show that from 2001 to 2021, the mean RSEI values in China showed a fluctuating upward
trend; the EEQ varied significantly in different regions of China, with a lower EEQ in the north and
west and a higher EEQ in the northeast, east, and south in general. The spatio-temporal patterns
of hot/cold spots in China were dominated by intensifying hot spots, persistent cold spots, and
diminishing cold spots, with an area coverage of over 90%. The hot spots were concentrated to the
east of the Hu Huanyong Line, while the cold spots were concentrated to its west. The oscillating
hot/cold spots were located in the ecologically fragile agro-pastoral zone, next to the upper part of
the Hu Huanyong Line. Natural forces have become the main driving force for changes in China’s
EEQ, and precipitation and soil sand content were key variables affecting the EEQ. The interaction
between these factors had a greater impact on the EEQ than individual factors.

Keywords: Google Earth Engine; remote sensing ecological index; GeoDetector; eco-environmental quality

1. Introduction

The eco-environment is vital for human survival and progress, acting as a neces-
sity for both physical sustenance and societal development and playing a critical role in
supporting long-term social and economic growth [1]. However, human effects on the
eco-environment have escalated as a result of rising urbanization, and ecological and envi-
ronmental concerns have grown increasingly critical [2]. The Sixth Assessment Report from
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the Intergovernmental Panel on Climate Change (IPCC) highlights that global warming,
driven by human activities, is threatening eco-environmental quality (EEQ) and raising a
range of eco-environmental problems [3], such as biodiversity loss [4], land degradation,
soil erosion [5], and urban heat islands [6–8]. To address the increasingly critical problems
of EEQ, the United Nations has included the conservation, restoration, and promotion of
the sustainable use of terrestrial ecosystems in its Sustainable Development Goals (SDGs).
EEQ evaluation serves as a crucial foundation for shaping environmental protection poli-
cies and crafting resource development and utilization plans. It facilitates the coordination
of regional economic development and environmental protection, thereby promoting the
harmonious coexistence of human society and natural environment [9].

Monitoring the long-term dynamics of EEQ through earth observation approaches is
crucial to achieving the SDGs [10–12]. The monitoring of EEQ involves various technologies
and methods for collecting, analyzing, and interpreting environmental data. Ground-based
monitoring stations and sensor networks allow for the detailed monitoring of environmen-
tal changes in local areas and can also be deployed in remote areas [13]. However, their
limited coverage and sparse distribution are not suitable for monitoring EEQ at large scales.
Ecological and mathematical models can also predict future environmental changes and
offer decision support, yet their accuracy is limited by the quality of input data and the
assumptions underlying the models. Model-building and maintenance can be particularly
challenging for complex ecosystems. Among the different ways of EEQ monitoring, re-
mote sensing techniques enable the rapid, large-scale, and long-term monitoring of EEQ,
making their use the most efficient method for assessing the eco-environment [14]. For
example, monitoring biological indicators such as the normalized difference vegetation
index (NDVI) can provide insights into ecosystem health. However, biological responses
are affected by a variety of factors with uncertain response time, which must be solved by
examining relevant mechanisms from multiple perspectives [15,16]. Considering that such
single-factor indicators usually focus on certain aspects of the ecological environment, they
are not universally applicable and do not provide a comprehensive reflection of the state
of EEQ [17]. Therefore, it is imperative to use a comprehensive model that incorporates
numerous ecological indices to evaluate EEQ.

An Ecological Environment Index (EEI) was introduced by the Chinese Ministry of
Environmental Protection in 2006, which combines five factors, i.e., Biological Abundance
Index, Vegetation Coverage Index, Water Network Density Index, Land Stress Index, and
Pollution Load Index, aiming to conduct an annual comprehensive EEQ evaluation at
different administrative levels and, in particular, address ecological challenges in some
key regions [18,19]. For example, the North China Plain grappled with water scarcity
and soil contamination by heavy metals due to intensive industrial activities and coal
combustion [20–22]; the Yangtze River Delta and Pearl River Delta regions experienced
ecological repercussions caused by rapid urbanization, land reclamation, and urban expan-
sion [23–25]; several southwestern provinces, including Yunnan, Guizhou, and Guangxi,
despite their rich biodiversity, faced ecological threats due to habitat loss resulting from
agricultural practices and logging [26,27]; and Inner Mongolia, Xinjiang, and North China
encountered issues of soil desertification and erosion due to overgrazing and intensive
agricultural production [28,29]. However, although feasible at the regional level, the EEI
requires a long interval of monitoring, making it less cost-effective to run. In 2013, a remote
sensing ecological index (RSEI) was proposed, which integrates four key satellite-derived
ecological factors: greenness, humidity, heat, and dryness [15]. To date, the effectiveness of
the RSEI in assessing EEQ has been demonstrated in various landscapes in China, such as
urban areas [30], wetlands [31], and basins [32–35]. However, most of the existing studies
have focused only on specific regions or ecosystems, such as nature reserves [36], watershed
ecosystems [37], mining ecosystems [38], land borders [39], and urban agglomerations [40].
A nationwide, comprehensive assessment of EEQ is still lacking. Moreover, the existing
studies lack nuanced examinations of the dynamics and driving factors of EEQ at var-
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ious levels, from national to local, failing to effectively uncover fundamental causes of
eco-environmental problems [41].

To fill the aforementioned gaps, this study aimed to (1) evaluate the EEQ of China
from 2001 to 2021 by constructing a long-term annual RSEI from Google Earth Engine
(GEE); (2) explore the spatial and temporal dynamics of EEQ through an emerging hot-spot
analysis (EHSA); and (3) reveal the driving factors of EEQ across China using a GeoDetector
model. The findings of this study would allow for more accurate identification of eco-
environmental issues and facilitate the implementation of targeted solutions, thereby aiding
in the optimization of current environmental policies [42,43].

2. Materials and Methods
2.1. Study Area

The study area is the entirety of China (Figure 1). Owing to its expansive territory and
vast geographical diversity, China spans a broad spectrum of terrains, including mountains,
plateaus, hills, basins, plains, and deserts. The nation’s climate is predominantly shaped by
intricate influences of monsoon circulation, further compounded by variations in terrain.
Consequently, the ecological environment of China exhibits a high degree of complexity,
with the quality varying significantly from one region to another. Concurrently, as the
largest developing country globally, China accommodates a substantial one-fifth of the
world’s population. While the country’s socio-economic status continues to experience
rapid growth, it is confronted with the formidable challenge of serious ecological degra-
dation. The Hu Huanyong Line is a population distribution line approximately at a 45◦

tilt, stretching from Heihe City in Heilongjiang Province to Tengchong City in Yunnan
Province [44]. It is often referred to as the mutation line of China—it is an important
dividing line of population geography, natural geography, and the ecological environment
in China [45].
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2.2. Technical Flowchart

Figure 2 shows a technical flow chart of this study. Here, the GEE platform was used
to preprocess the Moderate Resolution Imaging Spectroradiometer (MODIS) series image
dataset of China from 2001 to 2021. Subsequently, the four indicators were normalized,
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and the RSEI was calculated using principal component analysis (PCA). The spatial and
temporal evolution characteristics of the RSEI in China were analyzed using an EHSA.
Finally, potential indicators affecting the EEQ of China were selected, and the key variables
affecting the EEQ of China were analyzed using the GeoDetector model.
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Figure 2. Technical flow chart of the study. EEQ, Eco-environmental quality; LST, Land Surface
Temperature; NDBSI, Normalized Different Built-up and Soil Index; NDVI, Normalized Difference
Vegetation Index; PCA, Principal Component Analysis; RSEI, Remote Sensing Ecological Index; WET,
Wetness component of the tasseled cap transformation.

2.3. Data Sources

The remote sensing data used in this study were Moderate Resolution Imaging Spec-
troradiometer (MODIS) data covering the whole of China, which were obtained from the
GEE cloud computing platform between 1 January 2001 and 31 December 2021. On the
GEE platform, we de-clouded, cropped, projected, and computed the four RSEI indicators.
The MODIS is a space-based remote sensing instrument developed and manufactured by
NASA to understand global climate change and the impact of human activities on the
climate. The instrument receives data in 36 spectral bands ranging from 0.4 microns to
14.4 microns in the visible to infrared wavelengths. It provides a large range of global
data, including changes in cloud cover, changes in surface radiant energy, and oceanic and
terrestrial processes. The bands used in the study to calculate the four RSEI metrics are
listed in Table 1.

This study took into account the following driving factors of ecosystem quality: alti-
tude, river network density, soil sand content, temperature [46], precipitation [47], density
of built-up area, night-time light, and population density. The elevation data (Digital
Elevation Model, DEM) in China were derived from the Shuttle Radar Topography Mission
(SRTM) data of the United States space shuttle Endeavour, which were generated by resam-
pling based on the latest SRTM V4.1 data. The river network was obtained by kriging the
national river system data. The soil sand content was processed based on the World Soil
Database HWSD2.0 constructed by the Food and Agriculture Organization of the United
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Nations and the International Institute for Applied Systems in Vienna. Specifically, the soil
sand content was extracted separately from the soil depth layer data. Mean annual temper-
ature and mean annual precipitation data were generated by Delta spatial downscaling,
programmed at the regional downscaling scale in China based on the global 0.5◦ climate
dataset published by CRU, and the global high-resolution climate dataset published by
WorldClim. The built-up area data were extracted from the first Landsat-derived annual
land cover product of China (CLCD) from 1985 to 2019 [48]. Night-time light data were the
NPP-VIIRS-like NTL data (2000–2018), which were established through new cross-sensor
calibration from DMSP-OLS NTL data (2000–2012) and a composition of monthly NPP-
VIIRS NTL data (2013–2018) [49]. Population density data were obtained using LandScan
Global Population Distribution data from East View Cartographic, developed by the U.S.
Department of Energy’s Oak Ridge National Laboratory. The selected driving factors were
used to analyze the geographical and temporal variations in EEQ.

Table 1. Data sources.

Products Band Name Wavelength (nm) Description

MOD09A1

sur_refl_b01 620–670 Surface reflectance for band 1
sur_refl_b02 841–876 Surface reflectance for band 2
sur_refl_b03 459–479 Surface reflectance for band 3
sur_refl_b04 545–565 Surface reflectance for band 4
sur_refl_b05 1230–1250 Surface reflectance for band 5
sur_refl_b06 1628–1652 Surface reflectance for band 6
sur_refl_b07 2105–2155 Surface reflectance for band 7

QA - Surface reflectance 500 m
band quality control marks

MOD11A2
LST_Day_1km - Land surface temperature

QC_Day -
Daytime land surface

temperature (LST) quality
indicators

2.4. Methodology
2.4.1. RSEI Construction

The RSEI is made up of four indicators: greenness, aridity, humidity, and heat, which
together describe the EEQ of a region [15]. Greenness is represented by the NDVI, which
represents the degree of vegetation cover in the region [50]. Dryness is represented by the
Normalized Difference Built-up and Soil Index (NDBSI) [51], derived by averaging the
index-based building and soil indices. Humidity is represented by the WET, calculated
through the remote sensing data tassel cap [52]. The calculation method of each indicator
is shown in Table 2.

Table 2. Indicators employed in the RSEI (Remote Sensing Ecological Index).

Indicators Calculation Methods

NDVI NDVI = (ρnir − ρred)/(ρnir + ρred)

NDBSI
NDBSI = (SI + IBI)/2
SI = [(ρSWIR1 + ρred)− (ρblue − ρNIR)]/[(ρSWIR1 + ρred) + (ρblue + ρNIR)]

IBI =
2ρSWIR1/(ρSWIR1+ρNIR)−[ρNIR/(ρred+ρNIR)+ρgreen/(ρSWIR1+ρgreen)]
2ρSWIR1/(ρSWIR1+ρNIR)+[ρNIR/(ρred+ρNIR)+ρgreen/(ρSWIR1+ρgreen)]

WET WETMODIS = 0.2408ρblue + 0.3132ρgreen + 0.1147ρred + 0.2489ρNIR

−0.6416ρSWIR1 − 0.5087ρSWIR2

LST LST_Day_1km band from MOD11A2 products

The normalized difference vegetation index (NDVI) is generally recognized as a good
indicator of terrestrial vegetation productivity. To reflect the moisture state of water bodies,
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topsoil, and vegetation, the moisture component calculated by the remote sensing tassel
cap is utilized as a moisture indicator. The NDBSI, which is calculated by averaging the
Index-Based Built-up Index (IBI) and the Soil Index (SI), is used to monitor dryness. The
heat index uses the LST_Day_1km band of the MOD11A2 product.

Where ρi denotes the reflectance of the MODIS image corresponding to the i-band.
Thus, RSEI can be expressed as:

RSEI = f (NDVI, WET, LST, NDBSI) (1)

Considering the four indicators have various units and value ranges, they were
adjusted before PCA using the following formula:

Ni =
Ii − Imin

Imax − Imin
(2)

where Ni denotes the normalized value of a given indicator; Ii denotes the value of the indicator;
Imin and Imax denote the minimum and maximum values of the indicator, respectively.

RSEI0 denotes the first principal component (PC1) in the principal component analysis,
which uses principal component analysis to produce the first RSEI0. RSEI0 was additionally
standardized to generate the final RSEI to facilitate the measurements of the indicators. The
RSEI value ranges between 0 and 1, with a higher value indicating a better EEQ.

2.4.2. Emerging Hot-Spot Analysis

This study uses the EHSA tool provided by ArcGIS Pro to examine the spatio-temporal
distribution of RSEI changes at the province and city levels across China. The EHSA uses a
combination of two statistical methods to assess spatio-temporal patterns of target data:
the Getis-Ord Gi* index is used to determine the location and degree of spatial aggregation,
while Mann–Kendall trend analysis is used to assess time-series changes in Getis-Ord Gi*
statistical z-scores in each region [53,54]. This approach enables the assessment of trends in
both hot and cold spots within each grid.

With the resultant trend z-score and p-value for each location with data, and with the
hot spot z-score and p-value for each bin, the EHSA categorizes each study area location into
one of the 17 patterns as follows: No pattern, New hot/cold spot, Consecutive hot/cold
spot, Intensifying hot/cold spot, Persistent hot/cold spot, Diminishing hot/cold spot,
Sporadic hot/cold spot, Oscillating hot/cold spot, and Historical hot/cold spot.

2.4.3. GeoDetector

The GeoDetector method was utilized in this study to detect the influence of selected
drivers (elevation, river network density, average annual temperature, precipitation, density
of built-up area, night-time light, average annual precipitation, and soil sand content) on
regional EEQ [55]. The detector consists of four modules: factor detection, interaction
detection, ecological detection, and hazard detection, and has been widely used in a variety
of sectors [56,57]. In this study, we examined the effect of a single factor on the RSEI using
factor detection and the effect of two factors on the RSEI using interaction detection (see
Table 3). Firstly, the RSEI was selected as the dependent variable and the eight drivers were
selected as independent variables. Due to the large scope of the study, the prefecture level
was selected to obtain the values of each dependent and independent variable, and the mean
values of the RSEI and the respective variable factors were counted. The driving factors
were standardized using ArcGIS software to avoid the potential influence of different factor
sizes and variances in the range of values on the research. Secondly, the independent
variable factors were classified into five levels, as they are numerical values, using the
equidistant breakpoint method to transform them from numerical quantities to typological
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quantities. Finally, q-values were calculated using GeoDetector. The calculation formula is
as follows:

q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 = 1 − SSW
SST

(3)

where q denotes the explanatory power of the factor on the RSEI, with a larger q value
indicating a stronger influence; L denotes the stratification of the factor; Nh denotes the
number of cells corresponding to the h stratum of the RSEI and the factor; N denotes the
number of cells corresponding to the RSEI and the factor in the whole region; σh

2 denotes
the variance of the changes in the h stratum; and σ2 denotes the variance of the changes in
the RSEI in the whole region.

Table 3. Detection of types of factor interaction.

Interaction Criteria

Nonlinear weakening q(X1 ∩ X2) < Min[q(X1), q(X2)]
Single-factor nonlinear attenuation Min[q(X1), q(X2)] < q(X1 ∩ X2) < Max[q(X1), q(X2)]
Two-factor enhancement q(X1 ∩ X2) > Max[q(X1), q(X2)]
Mutually independent q(X1 ∩ X2) = q(X1) + q(X2)
Nonlinear enhancement q(X1 ∩ X2) > q(X1) + q(X2)

The samples were entered into a GeoDetector model, and the results were divided into
two parts: the explanatory power of the independent variable X on the dependent variable,
and the interaction of the effects of these independent factors on the dependent variable.
Interaction detection was used to determine the extent to which any two influencing factors,
when combined, explain changes in EEQ. Interaction detection may assess the intensity,
direction, and linearity of the factor interaction, and facilitate the examination of variable
interactions.

3. Results
3.1. Distribution of EEQ in China from 2001 to 2021

The mean values of the RSEI in China showed a fluctuating upward trend from 2001
to 2021, indicating that the EEQ in the study area as a whole was better (Figure 3). The
lowest mean value of the RSEI was 0.577 in 2007, and the highest mean value was 0.682
in 2018. Among them, the mean values of the RSEI decreased from 0.603 in 2001 to 0.577
in 2007, and the EEQ tended to deteriorate. From 2007 to 2021, the mean values of the
RSEI increased from 0.577 to 0.636, the EEQ improved to 0.577, and the EEQ tended to
deteriorate. Although the mean value of the RSEI in China had a downward trend in 2014,
2017, and 2019, it remained above 0.6. Overall, the EEQ of China has shown slow growth
in the last 20 years, with an average growth trend of 0.002 per year and a growth rate of
5.35 percent.

The areas with good and bad environments were located on the east and west sides
of the Hu Huanyong Line (Figure 4). The areas of poor EEQ in China from 2001 to 2021
were mainly concentrated in arid and semi-arid regions and desert areas west of the Hu
Huanyong Line, including the Qaidam Desert, located in the northeastern part of the
Tibetan Plateau; the Badanjilin Desert on the southwestern edge of the Inner Mongolia
Plateau; the Tengger Desert in the southwestern part of the Alashanzuo Banner of the Inner
Mongolia Autonomous Region; the border with the central part of Gansu Province; and
the Taklamakan Desert in the center of the Tarim Basin in southern Xinjiang. Semi-arid
areas include western Tibet, most of Qinghai, south-central Gansu, eastern Inner Mongolia,
northern Shaanxi, and northern Shanxi, all of which, due to climatic constraints, had RSEI
values of around 0.5 and medium ecological quality. At the same time, most areas in
Southern and Eastern China, where located to the east of the Hu Huanyong Line, had large
amounts of arable land with a green RSEI, indicating that the EEQ in these areas was good.
However, certain urban areas and cities and counties with rapid economic development
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and high levels of urbanization had RSEI values of only about 0.5, with medium EEQ. The
three northeastern provinces (Heilongjiang, Jilin, and Liaoning) had the best EEQ in China,
with RSEI values close to 1.
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In order to understand the variation in annual mean EEQ at the prefecture level, each
of the 10 cities with the highest and lowest annual mean EEQs were selected, as shown in
Figure 5. The gap between the 10 cities with the highest annual mean EEQ and the 10 cities
with the lowest annual mean EEQ is huge. The annual mean EEQs of the top 10 cities are
all greater than 0.75, and those of the 10 cities with the lowest annual mean EEQs are all
less than 0.53. This illustrates the great variation in ecological quality between Chinese
cities. It is worth noting that 9 of the 10 cities with the highest annual mean EEQ are in
Northeast China, while all 10 cities with the lowest annual mean EEQ are in Western China.
They are separated by the Hu Huanyong Line.
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3.2. Changes of EEQ at the Provincial Level

Figure 6 shows the annual variation of mean RSEI in China from 2001 to 2021, based
on which 34 provincial administrative divisions can be divided into 3 levels. There is
considerable regional heterogeneity in the distribution of EEQ in China.
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Figure 6. Annual change in the average value of RSEI (Remote Sensing Ecological Index) at the
provincial level from 2001 to 2021.

The provinces of Heilongjiang, Jilin, Liaoning, Anhui, and Fujian have relatively
greater annual mean EEQ values among the 34 provincial administrative divisions; their
annual mean EEQ values are mostly above 0.70. The four provinces of Tianjin, Shanxi,
Hong Kong, and Shanghai are at the end of the first level, whose annual mean EEQ values
are all greater than 0.6. The five provinces of Tibet, Qinghai, Inner Mongolia, Ningxia, and
Gansu are in the second tier, with the lowest annual mean EEQ values being greater than
0.47. Xinjiang is alone at the third level, with the highest annual mean EEQ value being
less than 0.52. The provinces in the second and third levels are all to the west of the Hu
Huanyong Line. The annual mean EEQ value in most of the provinces shows a slightly
upward trend overall, and the annual mean EEQ value in most of the provinces showed
a significant decline in 2005a, 2007a, 2017a, and 2019a. Vertically, the EEQ of the three
northeastern provinces had always been at a good level, with the RSEI value stabilized at
0.5 or above. The EEQ in Southern and Eastern China has changed little and stayed at a
good level, with a fragmented distribution of areas with medium EEQ, which is closely
related to the level of urban development. The EEQ of arid regions such as most of Xinjiang,
northwestern Gansu, western Inner Mongolia, northern Ningxia, northwestern Qinghai,
and northern Tibet has always been at a poor level. The western part of Tibet had relatively
large changes in RSEI values, with RSEI decreasing significantly in 2004, 2005, 2015, and
2018, and most of the areas with medium EEQ turned to poorer levels.

3.3. Spatial-Temporal Patterns of EEQ

Figure 7 shows the spatial-temporal patterns of the RSEI in China. The locations high-
lighted in red represent spatio-temporal patterns of hot spots, while those in blue represent
spatio-temporal patterns of cold spots. The spatio-temporal patterns of hot/cold spots in
China are dominated by intensifying hot spots, persistent cold spots, and diminishing cold
spots, followed by oscillating hot spots, persistent hot spots, and oscillating cold spots,
with an area percentage of 49.51%, 27.72%, 13.58%, 4.90%, 3.53%, and 0.51%, respectively.
It is clear that the hot spots are concentrated east of the Hu Huanyong Line, while the
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cold spots are concentrated west of it. The intensifying hot spots are mainly located in
a vast area east of the Hu Huanyong Line. The persistent hot spots form six clustered
areas in China, located in (1) Tianjin and Langfang in the Beijing-Tianjin-Hebei region;
(2) Weihai in the Shandong Peninsula; (3) Rizhao, Linyi, and Xuzhou at the junction of
Jiangsu and Shandong; (4) Yancheng, Taizhou, Nantong, Zhenjiang, Nanjing, Changzhou,
Wuxi, Suzhou, Shanghai, Huzhou, Jiaxing, Shaoxing, Ningbo, and Zhoushan in the Yangtze
River Delta region; (5) Central Henan and Hubei, involving Handan in Hebei, Heze in
Shandong, Anyang, Puyang, Hebi, Shangqiu, Kaifeng, Zhengzhou, Zhoukou, Xuchang,
Pingdingshan, Nanyang in Henan, Xiangyang, Jingmen, Tianmen, Qianjiang, and Xiantao
in Hubei; (6) and Chamdo and Lhasa in Tibet. The oscillating hot spots move from the
junction of Inner Mongolia and Jilin to the west and south, away from the Hu Huanyong
Line. In addition, the oscillating hot spots are also found in Guangzhou, Foshan, Dongguan,
Zhongshan, Shenzhen, Hong Kong, and Macao in the Pearl River Delta region, as well as
in Ili in Xinjiang. The oscillating cold spots are distributed in narrow strips just below the
gradually decreasing hot spots. The diminishing cold spots are mainly concentrated in
the upper-middle part of Inner Mongolia, Ningxia, and Gansu, the Haixi Mongol-Tibetan
Autonomous Prefecture in Qinghai, and Kashgar, Aksu, Karamay, and Changji Hui Au-
tonomous Prefecture in Xinjiang. The persistent cold spots are mainly concentrated in
Xinjiang, most parts of Tibet, Jiuquan in Gansu, Yushu Tibetan Autonomous Prefecture in
Qinghai, and Alxa League in Inner Mongolia.
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3.4. Natural and Social Driver of EEQ

Based on available data and the actual situation in the study area, eight driving
factors were selected for studying the change in EEQ in the study area from 2001 to 2021:
elevation, population density, average annual temperature, density of built-up area, night-
time light, river network density, average annual precipitation, and soil sand content
(see Figure 8). All drivers were normalized in ArcGIS. Observably, elevation impacts the
natural environment the most due to the variant climatic conditions in various vertical
zones. Precipitation and temperature are indicators of the local climate, while river network
density is a comprehensive measure of a region’s natural geography. High river network
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density is typically found in regions with high precipitation, steep topographic slopes, and
impermeable soils. Population density, demand for night-time light, and density of built-up
area are all direct indicators of a region’s level of economic development. The higher the
level of economic development, the higher the population density, demand for night-time
lighting, and density of building land.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 24 
 

 

slopes, and impermeable soils. Population density, demand for night-time light, and den-
sity of built-up area are all direct indicators of a region’s level of economic development. 
The higher the level of economic development, the higher the population density, demand 
for night-time lighting, and density of building land. 

 
Figure 8. Driving factors of EEQ (Ecological Environmental Quality) in China, (a) elevation, (b) pop-
ulation density, (c) average annual temperature, (d) density of built-up area, (e) night-time light, (f) 

Figure 8. Driving factors of EEQ (Ecological Environmental Quality) in China, (a) elevation, (b) pop-
ulation density, (c) average annual temperature, (d) density of built-up area, (e) night-time light,
(f) river network density, (g) average annual precipitation, (h) soil sand content. All drivers have
been normalized in ArcGIS.



Remote Sens. 2024, 16, 1028 13 of 22

The p-value associated with the q-value for each independent variable, denoted as
X in the GeoDetector, serves as an indicator of the significance of the respective factor. A
p-value below 0.05 suggests a statistically significant difference, while a p-value below
0.01 indicates a highly significant difference. Essentially, a smaller p-value implies an
increased likelihood that the independent variable X exerts an influence on the dependent
variable Y. The p-value for each indicator is less than 0.001, indicating that the selected
detection parameters have a significant impact on the geographical differentiation charac-
teristics of EEQ. The effect of each factor on EEQ and its variation from 2001 to 2021 are
shown in Figure 9. Average annual precipitation and soil sand content exhibit the most
substantial impact on EEQ, as evidenced by q-values consistently exceeding 0.3. Notably,
in 2002, these q-values reached their peak at 0.42. Furthermore, the q-values associated
with average annual precipitation, soil sand content, river network density, and average
annual temperature generally demonstrate a declining pattern, suggesting a diminishing
influence of environmental factors on EEQ over the years. In contrast, night lighting, annual
average temperature, and density of building land exhibit comparatively minor effects, as
indicated by q-values below 0.1. It is worth noting that the impact of population density
has increased over the last 20 years, with the q-value rising from 0.08 in 2001 to 0.16 in
2021. This demonstrates how human activities have increasingly influenced changes in the
EEQ of China. As the economy expands, so does the scale of human activity, leading to
an increased demand for various resources and placing challenges and pressures on the
surrounding natural environment.
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Figure 9. Single-factor analysis. x1: elevation; x2: population density; x3: night-time light; x4: average
annual precipitation; x5: soil sand content; x6: river network density; x7: average annual temperature;
x8: density of built-up area. The p-values for all points are less than 0.001.

The results of factor interaction detection in this study showed two-factor enhance-
ment and nonlinear enhancement effects, indicating that the influence of the two-factor
interaction is greater than the independent influence of the original two factors and is thus
better able to promote changes in EEQ in China. The evolutionary trends of interaction
factor drivers, as depicted in Figure 10, reveal that average annual precipitation exerts the
most robust interaction from 2001 to 2021, as indicated by consistently high q-values pre-
dominantly surpassing 0.4. Notably, the most impactful interaction occurs between annual
precipitation and built-up area density, with q-values reaching 0.627 (2009), 0.621 (2015),
and 0.617 (2016). Subsequently, the interactions of annual precipitation with population
density (q-value of 0.615 in 2019) and elevation (q-value of 0.614 in 2016) also demonstrate
considerable influence. Examining the longitudinal perspective, the q-values associated
with built-up area density∩annual precipitation and built-up area density∩soil sand con-
tent consistently exceed 0.4. In summary, average annual precipitation is the dominant
factor of EEQ in the study area, and the strength of the interaction between natural and
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social factors is greater than that within each factor, indicating that the main driving factors
of EEQ in China are natural factors.
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4. Discussion

The Chinese EEQ has a clear east–west divide along the Hu Huanyong Line. The
average value of the RSEI in China showed a fluctuating upward trend from 2001 to 2021.
From 2000 to 2021, the EEQ of China was impacted predominantly by natural factors and
gradually decreased, while the impact of human factors was stable and slightly increased.

4.1. Changes in National EEQ

The EEQ of the whole country showed a broad downward trend from 2001 to 2007 and
then rebounded from 2007 to 2021, and the fluctuation of the overall EEQ became smaller.
The EEQ of the entire country was significantly influenced by the economic development
from 2001 to 2007. The emission of environmental pollutants and the destruction of natural
resources in the period of rapid economic development produced a wide range of obvious
declining trends in the EEQ of the country. During the period of 2007–2010, the EEQ of the
country improved effectively as the macro-controls of national policy effectively curbed
the destruction of EEQ in economic development. In the stage after 2010, the influence of
social factors on EEQ became gradually significant. The ecological problems brought about
by the process of urbanization gradually became severe, and the environmental pollution
brought about by the transformation of the industrial structure improved but still existed.
Consequently, the EEQ of China declined in 2014, 2017, and 2019. However, with the
improvement of the economy, culture, and education systems, coupled with enhancements
in population quality and an increasing social awareness of environmental protection, the
EEQ of China rose in line with environmental protection and resource conservation. It
can be expected that the EEQ of China will gradually stabilize with the stabilization of its
economic structure and social and demographic structure.

4.2. Changes in Regional EEQ

The regions with the poorest EEQ are mostly located in Xinjiang, Gansu, and Qinghai
in the west and Inner Mongolia Autonomous Region in the north, and natural factors
are the primary causes of low EEQ in the western regions. These regions include high
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altitudes, vast topography undulations, and landscapes dominated by the Gobi Desert
and sandy areas [58], with temperature extremes and insufficient precipitation resulting in
inadequate plant cover and vulnerable biological habitats [59]. These areas need special
attention in China’s pursuit of the SDGs. The EEQ in most areas of Western China is
mediocre or worse due to natural constraints. Noteworthy is the slight increase in the EEQ
in the western region in 2010, while the RSEI values in other regions declined. This trend
may be associated with the Ministry of Environmental Protection of China’s 2008 study
on ecological civilization development in the western region’s ecologically fragile and
impoverished regions. The EEQ in Tibet, Ningxia, Shaanxi, Shanxi, and Hebei provinces
was the lowest. Conversely, the EEQ of the three northeastern provinces of Heilongjiang,
Jilin and Liaoning was much better than the national average. The flat terrain and fertile soil
of Northeast China facilitate vegetation growth. Moreover, the region is abundant in forest
resources, and the forests help with water nourishment and soil erosion prevention, making
them imperative for the governance and protection of the local eco-environment [11]. The
EEQ is also lower in areas with heavy human activity interference, such as Macao, Shanghai,
and Hong Kong, where socio-economic development, high population density, and low
vegetation cover dominate [60,61].

China is one of the world’s most populated countries, with a particularly complicated
natural environment. Years of uncoordinated economic expansion have resulted in a
fundamental imbalance in the link between the demographic of China, economic, social,
and ecological surroundings, with significant variances in EEQ across the country. Although
the quality of the natural environment in both the west and the north is worse than the
national average, the reasons for this vary. The poorer EEQ of Northern China is primarily
due to the backwardness of industries and the over-concentration of polluting, energy,
and resource industries [62–64], which pollute the surrounding environment during the
manufacturing process. The natural environment in Western China is relatively fragile
in many ways [65,66], and much of the western region is in arid or semi-arid climatic
zones with low precipitation, particularly in certain areas of Xinjiang and Inner Mongolia,
where drought is a serious problem, putting enormous pressure on the local ecosystem.
The western region has a distinct grassland environment, although herder overgrazing
has resulted in grassland degradation [67], threatening local biodiversity and ecological
balance.

4.3. EEQ’s Spatial-Temporal Pattern

EHSA can identify statistically significant spatio-temporal trends. Here, it reveals the
complexity of the current RSEI changes in China and reflects the aggregation pattern and
trend of the RSEI. Low RSEI values aggregate as the cold spots of EEQ, while high RSEI
values aggregate as the hot spots of EEQ. The spatial distribution of EHSA suggests that the
RSEI spatio-temporal hot spots of China are mainly distributed east of the Hu Huanyong
Line, where the EEQ has continued to improve in the last two decades. In contrast, most
of the area west of the Hu Huanyong Line includes the spatio-temporal cold spots of the
RSEI, where the EEQ has not improved significantly.

Intensifying hot spots cover nearly half of the territory in China, concentrated east
of the Hu Huanyong Line. This means that these areas have been hot spots for at least
20 years and that the RSEI at this location has shown a statistically significant increase over
this period of time. The EEQ in these regions is significantly better. The persistent hot spots
mean that the location has been a hot spot for at least 20 years and the RSEI level has not
tended to rise or fall significantly over that time. Most of them are located around the urban
agglomeration (e.g., Yangtze River Delta urban agglomeration), where there is a high level
of human activity, except for Chamdo in Tibet. He [68] found less fluctuation in EEQ in the
Yangtze River Delta region over the past two decades. The oscillating hot/cold spots are
banded around the Hu Huanyong Line, overlap considerably with an agro-pastoral zone of
China, and are also at the junction of China’s RSEI cold hot spots. The natural environment
there is fragile. The area of oscillating hot spots is 10 times that of the oscillating cold spots.
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This indicates an overall ecological improvement in the region. Ili also is an oscillating
hot spot as it has experienced a process of decline followed by slow recovery, and it has
largely stabilized since 2010 [69]. The distribution of diminishing cold spots indicates a
positive ecological trend. This is consistent with the conclusion that the ecological quality
of the Yellow River Basin Area and the semi-arid grassland area in Northwest China is
generally improving [70]. The persistent cold spots are mainly concentrated in the desert
areas of arid zones or alpine deserts, which have a harsh natural environments and very
little human activity, making it extremely difficult to improve the ecosystem.

4.4. EEQ’s Driving Factors

Precipitation, river network density, and soil sand content are the main factors influ-
encing changes in the overall EEQ in China. Additionally, climatic factors also play a role
in the spatial distribution of EEQ. The findings of this study align with previous research
in the field [71]. The soil type in the study area plays a dominant role in determining the
EEQ. Given that much of Western China is located in arid and semi-arid climatic zones
with low precipitation, the soil is vulnerable to wind and water erosion. Moreover, the
high sand content of the soil affects vegetation growth and soil retention capacity, leading
to regional eco-environment fragility. The Loess Plateau region features steep topography
and is prone to soil erosion, resulting in a high soil sand content, and the region’s EEQ
assessment is primarily “fair”. In China, precipitation is more concentrated in the south
and less concentrated in the north, and both precipitation and river network density reflect
water conditions in the region. The Yangtze River Delta and the Pearl River Basin in China
have plentiful yearly precipitation and complex river networks; therefore, wetlands and
marshes are widely spread. Some studies have demonstrated that wetlands are extremely
important to the region’s eco-environment and play critical roles in maintaining ecological
balance, safeguarding biodiversity, and regulating climate [72–74]. This is also consistent
with the study’s findings that the EEQ of Eastern and Southern China has improved.

The relatively low single-factor explanatory power of human social factors for EEQ in
the study area may stem from several factors. Firstly, the large size of the study area might
dilute the influence of localized social factors. Secondly, indicators such as population
density, night-time lighting, and building density exhibit an increasing trend from the north-
west to the southeast of China. This suggests that the western and eastern regions of China
are sparsely populated and relatively backward in terms of economic development. As a
result, the social factors of these regions have not been extensively studied. Social variables
have limited explanatory power for the overall EEQ in the study area. Compared to natural
causes, social factors have a more rapid impact on regional EEQ. Due to geographical and
climatic conditions, the population growth rate in Western China has been much lower
than in the eastern and southern areas over the past 20 years. At the same time, economic
growth is a reflection of human activities, and the western region has lagged behind the
coastal areas, resulting in the western region having the least change in EEQ among the
five regions. On the one hand, rapid economic development and increasing population
density, combined with lax government oversight of environmental pollution monitoring
and prevention, resulted in the overall EEQ of China being average at the beginning of the
21st century. On the other hand, since 2010, with the government paying more attention
to environmental issues and promoting the concept of sustainable development, coupled
with the growing awareness of environmental protection among citizens, the EEQ has been
gradually and steadily improving.

China’s State Council issued the National Ecological Environment Construction Plan in
1998, launching a series of major initiatives to improve the country’s eco-environment. The
greater the number of major ecological projects carried out in a region, the greater the degree
of environmental improvement. The northern region has implemented major ecological
projects such as the Three North Protective Forest System, the comprehensive management
of the Beijing-Tianjin sand source, and the protection of natural forest resources. As a
result, the average RSEI has increased from 0.56 in 2001 to 0.63 in 2021, making it the region
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with the largest increase in the average RSEI. The Three North region has successfully
established an extensive forest protection system spanning east to west over the recent
years, resulting in a notable improvement in both forest and vegetation coverage within
the region. A pivotal initiative contributing to this enhancement is the Beijing-Tianjin
Wind and Sand Source Comprehensive Management Project, which strategically employs
comprehensive management measures to establish forests and grassland. The Natural
Forest Protection Project specifically targets key state-owned forestry enterprises and locally
well-known forestry enterprises playing vital ecological roles across 18 provinces, such as
Yunnan Province, Sichuan Province, Chongqing City, and Guizhou Province. This project
involves a systematic reclassification and regionalization of natural forests, prompting
adjustments in the management direction of forest resources. The national strategies for
the development of western regions, coupled with coordinated regional development
strategies, have significantly propelled economic growth in the western and peripheral
regions, resulting in a substantial enhancement of the region’s capabilities in the realm
of environmental protection. However, the average RSEI increased by less than 0.02 in
both the western and eastern regions. Despite the large number of ecological projects
implemented, the western region has a low level of ecological restoration, which may
be hindered by climate variables. The lower increase in EEQ in the eastern region can
be attributed to its higher initial EEQ, fewer significant ecological projects, and fewer
ecological restoration methods.

4.5. Strengths and Limitations

This study investigated the spatial and temporal evolution characteristics of EEQ in
China and its driving factors from 2001 to 2021 using methods such as emerging spatio-
temporal hot-spot analysis and GeoDetector. In the process of studying the changes in
EEQ across the country, the characteristics of the changes in its EEQ were analyzed at
the prefecture and city levels through emerging spatio-temporal hot-spot analyses. This
approach helps in clearly identifying the differences in the EEQ between provinces and
cities and tracking the trends over time. Diagnosing the dominant factors affecting the
EEQ of China and analyzing the factors influencing EEQ in conjunction with social policies
provide valuable insights for the timely evaluation of the regional EEQ of China, rational
formulation of environmental protection policies, effective management of EEQ, and
promotion of ecologically sustainable development in China.

Owing to the intricate nature of the ecological environment and the multitude of
factors influencing its quality, this study faces challenges in data acquisition and is marked
by certain limitations. Notably, there is an absence of a data validation component, and
the accuracy and precision of the RSEI are not verified. Furthermore, the study lacks
essential ground-truth data, such as information on soil heavy metal pollution and or-
ganic matter pollution, which should be incorporated into subsequent investigations. To
augment the robustness of the research results, there is a need for synergistic validation
with remote sensing data, coupled with an emphasis on refining sampling accuracy to
enhance the overall representativeness of the study [75]. Additionally, the analysis of
driving factors overlooks certain elements. Future research should address this gap by
considering factors like industrial layout, local policy variables (e.g., ecological red line,
urban development boundaries, construction of water conservancy facilities, vegetation
greening policy), and energy structure. Integrating these aspects into the analysis will
provide a more comprehensive understanding of their influence on EEQ.

5. Conclusions

This study monitors and evaluates the EEQ of China from 2001 to 2021 based on the
RSEI indicators, examines the drivers affecting the EEQ of China, and draws the following
conclusions:

1. Throughout the research period, the average RSEI value in China showed a variable
and growing tendency. From 2001 to 2007, the mean value of RSEI in China declined
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by 0.02 points, and after 2007, the EEQ of China continued to improve while remaining
steady. The three northeastern provinces (Heilongjiang, Jilin, and Liaoning) have had
high EEQ for the last 20 years, whereas the central area of Xinjiang, the western region
of Inner Mongolia, and the northwestern region of Qinghai have had poor EEQ. The
EEQ is generally good to moderate in the northern and southern regions of China.

2. Through a spatiotemporal analysis of the EEQ and dynamic changes in the prefec-
tures of China, it is observed that there is significant regional heterogeneity in the
distribution of EEQ. The EEQ in the northeast, east, and south is noticeably better
than that in the north and west, and the trends of improvement or deterioration align
with the national level overall. The mean values of EEQ showed the largest increase
during the periods of 2007–2009 and 2014–2016, while there were significant decreases
in 2007 and 2017. The western region experienced the smallest overall changes in
EEQ, suggesting that the Chinese government should prioritize ecological planning
and management efforts in the western region.

3. The spatio-temporal patterns of hot/cold spots in China are dominated by intensifying
hot spots, persistent cold spots, and diminishing cold spots, with an area coverage of
over 90%. The hot spots are concentrated east of the Hu Huanyong Line, while the
cold spots are concentrated west of it. The intensifying hot spot is mainly located in
a large area east of the Hu Huanyong Line. The ecological state of China has been
relatively stable overall over the past two decades. The oscillating hot/cold spots are
located in the ecologically fragile agro-pastoral zone, next to the upper part of the Hu
Huanyong Line.

4. According to the results of the GeoDetector quantitative analysis, natural factors in
the study area are the dominant factors affecting EEQ, with precipitation and soil sand
content being the key factors influencing the change of overall EEQ in China. In future
environmental protection initiatives, the government can strategically prioritize the
execution of ecological projects aimed at averting the degradation of the ecological
environment in the northwestern region. This involves addressing issues such as
wind and sand fixation and mitigating soil erosion. In the southern region, particular
attention should be directed towards managing population density and built-up
area density. Implementing well-considered urban development planning policies is
crucial to enhancing the overall quality of the regional ecological environment.
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