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ABSTRACT 
The use of street view imagery (SVI) and advanced urban visual 
intelligence technologies has revolutionized built environment 
auditing (BEA) practice, by enabling high-resolution BEA at large 
scales. This study reviewed 96 studies of BEA published before 
October 2023. The Google SVI was employed in 92.7% of the 
included studies. Manual processing of SVI was used in BEA in 
most studies (81.3%), while deep learning methods were mostly 
used in the remaining studies. Validated auditing tools were used 
in 71% of the studies. Streets were the most frequently audited 
objects (54.2%), followed by sidewalk (51%), traffic (49%), and 
land use (34.4%). Objective attributes exhibited higher reliability 
in BEA, compared to subjective attributes (e.g. neighborhood 
environmental perception). The Active Neighborhood Checklist 
and Microscale Audit of Pedestrian Streetscapes were the two 
most widely used SVI-based BEA tools. Several key areas for 
improving the accuracy and reliability of SVI-based BEA were 
identified: building standardized datasets of built environment 
features for more accurate auditing, combining multi-source SVI 
for more comprehensive assessments, and adapting auditing tools 
to the contexts in developing countries. This study would contrib
ute to a deeper understanding of built environmental influences 
on health, and facilitate informed decision-making in urban plan
ning and public health efforts.
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Introduction

Built environment refers to the human-made places where we live, work, and engage 
in daily life. Considered a necessary component of the exposome (the totality of expo
sures from conception onwards) and usually characterized by in-field documenting 
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methods, the built environment has been drawing increasing attention from a variety 
of fields over the past decade (Sallis et al. 2020, Jia 2021). It plays an essential role in 
shaping and affecting individuals’ perceptions and behaviors, and consequently, exert
ing a profound influence on their health status (Forsberg and von Malmborg,2004
Winters et al. 2010, Robinson et al. 2018, Jia et al. 2019c). For instance, higher land use 
mix, featuring elements, such as speed limits and traffic safety concerns extracted 
from an in-field documenting method namely the Neighborhood Environment 
Walkability Survey, were associated with increased physical activities of adults from 
eight Latin American countries (Ferrari et al. 2020). However, such associations were 
the opposite in some other studies. For example, traffic safety concerns extracted from 
the same documenting method showed a negative association with active transport 
to school among adolescents in New Zealand (Rahman et al. 2023). The probable rea
son was that in-field documenting methods varied significantly across different regions 
and research contexts, and involved human perception and subjectivity. Therefore, 
associations between the built environment and health outcomes remain unclear due 
to uncertainties and variations in traditional in-field documenting methods.

Traditional in-field documenting methods often used to audit built environment 
require investigators to undergo specialized training as auditors, which, however, are 
costly, time-consuming, and may also suffer from inter-auditor inconsistencies in per
ception and behavior (Li et al. 2022b). To overcome these problems and better charac
terize the intricate and multi-faceted built environment, built environment auditing 
(BEA) has emerged as a promising approach for quantifying environment attributes 
with good accuracy (Forsberg and von Malmborg 2004). Photographs have been intro
duced as a BEA-assisting tool to systematically document street space and support 
urban inquiry. For example, photographs in 1890 were used to assess the living condi
tions of poor communities in New York City of the US (Riis 1890). In the early 20th 
century, photographs were more used in research on urban neighborhoods in several 
US cities (Lindner 2019). In another US study in 1960, the effect of photograph- 
extracted built environment features on residents’ perception of their neighborhood 
environment was studied (Lynch 1964). In 1970, time-lapse photography, which cap
tures scenes over an extended time period to produce a short video, was used to 
study how people used public spaces in New York City the US (Whyte 1980). However, 
in those early efforts, it is necessary for researchers to manually photograph the study 
areas.

The recent ability to capture digital multi-perspective photographs by a moving 
vehicle has greatly advanced BEA by allowing us to record street scenes comprehen
sively and objectively (Roman et al. 2004, Anguelov et al. 2010). Therefore, street view 
imagery (SVI) has emerged as a valuable resource informing various urban research 
endeavors, particularly in the realm of streetscape visual object detection (Biljecki and 
Ito,2021 Stiles et al. 2022). SVI comprises publicly available image datasets, captured 
by vehicles moving along streets, and further processed to provide panoramic views 
of cities. This technological innovation has shifted the implementation of BEA methods 
from manually on-site to (semi-)automatically on the computer (Kelly et al. 2013). 
The rapid proliferation of map services, providing a large amount of publicly available 
geo-tagged street-level images, has made it increasingly feasible to conduct virtual 
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auditing through SVI (Zhang et al. 2019, Yin et al. 2023). The SVI has been used in BEA 
since 2010 and evolved from the replacement of filed work to (semi-)automatic audit
ing tools (Clarke et al. 2010, Nguyen et al. 2018). SVI typically originates from two 
major sources: company-owned photos, such as Google Street View, and user-contrib
uted photos. The latter refers to content sourced from ordinary individuals or the gen
eral public, as opposed to images directly from the company. This dual sourcing 
broadens the scope of coverage, encapsulating areas that moving vehicles might not 
have reached. The coverage of SVI varies widely by region and service provider, with 
urban areas better covered than rural areas. For example, providers like Google usually 
have urban and tourist areas extensively covered, and have remote and less populated 
regions sparsely covered or even lacking SVI. These datasets have been accessible by 
commercial online map providers, which allow auditors to observe the built environ
ment at a streetscape level, at a large scale, and in high safety and efficiency.

The lack of a uniform reporting standard among the majority of the existing BEA 
studies could result in misinterpretations of urban scenes, as well as inaccurate estima
tion of associations between the built environment and health outcomes (Brownson 
et al. 2009). With the increasing use of SVI in recent years, it is imperative to scrutinize 
the existing studies to promote a consistent reporting standard. However, a systematic 
review of the applications of SVI in built environment remains absent from the litera
ture. This study aimed to systematically review the literature reporting on SVI-based 
BEA. By summarizing key information, such as BEA methods, environment attributes 
audited, and SVI types used in those studies, this study would shed light on the 
current challenges and facilitate the standardization and advancement of BEA. The 
findings would serve as a useful resource and a key reference for researchers in mul
tiple fields, including geography, urban planning, public health, and emergency 
management.

Methods

We used the PubMed and Web of Science databases to search for refereed journal 
articles. To identify articles related to BEA and SVI, we used two sets of search terms: 
(1) ‘built environment� audit’, ‘auditing’, and ‘virtual audit�’; (2) ‘streetview�’, ‘street 
view�’, ‘street-view�’, and ‘street view image�’. We collected all the papers published 
from the inception of the electronic bibliographic databases up to October 2023. We 
followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines to conduct a systematic review (Moher et al. 2009), as depicted in 
Figure 1. Out of 429 initial results, we identified 96 eligible studies. These studies pro
vided information on the following: publication date, first author, journal name, 
research themes, study area, study scale, study unit, built environment attributes aud
ited, audited imagery, audited methodologies, reliability-calculated methodologies, 
audited results and their reliability, auditing tools, and variable types of attributes aud
ited (whether continuous or categorical).

Following the data extraction from all the included studies, we systematically classi
fied them into five distinct categories, namely: health and well-being (n¼ 36), socio- 
economics studies (n¼ 15), transportation and mobility (n¼ 17), urban morphology 
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(n¼ 1), and validating/developing the auditing tools (n¼ 27), in accordance with the 
classification system established by Biljecki and Ito (2021). Subsequently, we pro
ceeded to delineate the applications of SVI in the field of BEA by identifying the afore
mentioned domains.

Results

Characteristics of the included studies

Through our inclusion criteria, we included a total of 96 studies, with characteristics 
shown in Table S1 (Supplementary Appendix). All included studies were published 
after 2010, marking a discernible increase trajectory in the annual number of publica
tions over the past decade, as illustrated in Figure 2. These 96 studies were conducted 
in 36 countries across the world, specifically, the United States featured prominently 
with fifty-three studies, followed by seven studies in China and six in Canada. Belgium, 
Japan, and the United Kingdom each contributed three studies, while Australia, Brazil, 
and Spain each added two studies. Chile, Germany, Korea, New Zealand, and the 
Netherlands each hosted one study. Additionally, six studies had a multi-city focus in 
Europe, such as Ghent (Belgium), Paris (France), Budapest (Hungary), London (the 
United Kingdom), and the multi-city Randstad (the Netherlands). Two more studies in 
Melbourne (Australia), Ghent (Belgium), Curitiba (Brazil), Hong Kong (China), and 
Valencia (Spain), with one study each in San Francesco (the United States), and Oslo 
(Norway). The remaining study covered a remarkable 59 cities spanning 26 European 
countries. These studies were conducted at various geographic scales, including 
nationwide (n¼ 2), multi-state (n¼ 2), multi-city (n¼ 25), multi-county (n¼ 3), 

Figure 1. The flowchart that was followed when selecting and including studies on built environ
ment auditing.
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single-county (n¼ 2), single-state (n¼ 5), single-city (n¼ 56), and street (n¼ 1) (see 
Supplementary Appendix Table S1). The basic units of analysis in BEA ranged from 
neighborhoods, street segments, and street intersections.

Types of SVI and auditing tools

The vast majority of the studies (89 of 96, 92.7%) utilized Google SVI for BEA, while 
the remaining seven studies explored alternative SVI sources including Tencent SVI 
and Baidu SVI. Additionally, 13 studies employed other SVI sources, such as Bing Map, 
closed-circuit television, daum road view service, Google Earth, and Google Maps 
alongside Google SVI. In most studies (78 of 96, 81.3%), SVI was processed for BEA 
manually. Only 18 studies used computer vision and artificial intelligence technologies. 
Among these, deep learning techniques were particularly prevalent, employing convo
lutional neural network models like visual geometry group-16, visual geometry group- 
19, ResNet-18, SegNet, and DeepLab V3þ. These models were specifically tailored for 
image segmentation tasks, offering fine-scale detection of eye-level objects, such as 
trees, sidewalks, and bike lanes.

BEA tools are defined as a range of developed toolsets or instruments utilized to 
audit and assess built environment attributes, including physical structures, facilities, 
and surroundings within a given study area, comprising both validated and unvalid
ated auditing tools. The validated auditing tools were defined as a series of commonly 
used auditing tools, which are based on well-established references and often imple
mented as platforms, toolsets, and frameworks. In contrast, unvalidated auditing tools 
are usually self-developed, lacking validation in other studies, and thus could only 
serve as conceptual methods without systematic implementation. The frequently used 

Figure 2. Number of the included studies published each year.
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Table 1. Purpose and applied scenes of validated auditing tools.
Auditing tools Purpose Applied scenes Audited attributes

ANC Accessing key street-level 
features related to 
physical activity

Physical activity-related 
studies

– Land use types 
– Sidewalks 
– Shoulders and bike lanes 
– Street characteristics 
– Quality of the environment for 

pedestrians
CANVAS Measuring built 

environmental exposures 
of interest and 
environmental effect 
modifiers

Built environmental 
exposures and 
environmental effect- 
related studies

– Aesthetics 
– Physical disorder 
– Pedestrian safety 
– Motorized traffic and parking 
– Infrastructure for active travel 
– Sidewalk amenities 
– Human presence and social 

interactions
EGA-Cycling Assessing the physical 

environmental 
characteristics of cycling 
routes to school

Cycling-related studies – Land use types 
– Characteristics of street segment 
– Cycling facilities 
– Pedestrian facilities 
– Aesthetics

MAPS Examining the associations 
between microscale 
environmental attributes 
and macro-level 
neighborhood walkability

Walkability-related studies – Routes 
– Street segments 
– Crossings 
– Cul-de-sac

PEDS Assessing the walking 
environment

Walkability-related studies – Environment 
– Pedestrian facilities 
– Road attributes 
– Walking/Cycling environment

S-VAT Identifying and comparing 
environmental 
characteristics to assess 
the obesogenicity of 
neighborhoods

Obesity-related studies – Walking 
– Cycling 
– Public transport 
– Aesthetics 
– Land use mix 
– Grocery stores 
– Food outlets 
– Recreational facility-related items

SPACES Assessing the walking and 
cycling environment

Active transport behaviors- 
related studies

– Walking/Cycling function 
– Walking/Cycling safety 
– Walking/Cycling aesthetics 
– Walking/Cycling destinations

SSO Examining some 
phenomenon or aspect 
of behavior

Social-related studies No uniform audited attributes

SWEAT-R Understanding the 
influence of the physical 
environment on physical 
activity of older adults

Physical activity-related 
studies in elders

– Functionality 
– Safety 
– Aesthetics 
– Destinations and facilities

Virtual-STEPS Auditing instruments that 
can be used for 
widespread surveillance 
at local, provincial, and 
national levels

Auditing infrastructure – Pedestrian infrastructure 
– Traffic calming and streets 
– Building characteristics 
– Bicycling infrastructure 
– Transit 
– Aesthetics/disorder

ANC: active neighborhood checklist; CANVAS: computer assisted neighborhood visual assessment system; EGA- 
Cycling: environmental Google street view-based audit-cycling to school; MAPS: Microscale Audit of Pedestrian 
Streetscapes; PEDS: pedestrian environmental data scan; S-VAT: SPOTLIGHT-Virtual Audit Tool; SPACES: systematic 
pedestrian and cycling environment scan; SSO: systematic science observation; SWEAT-R: Seniors’ Walking 
Environmental Assessment Tool—Revised; Virtual-STEPS: Virtual Systematic Tool for Evaluating Pedestrian 
Streetscapes.
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validated tools included the Computer Assisted Neighborhood Visual Assessment 
System (CANVAS, n¼ 9), Active Neighborhood Checklist (ANC, n¼ 8), Microscale Audit 
of Pedestrians Streetscapes (MAPS, n¼ 8), SPOTLIGHT virtual audit tool (S-VAT, n¼ 7) 
and Social Science Observation (SSO, n¼ 4). Less frequently used tools, those with 
usage counts of 2 or less, encompassed the Neighborhood Environment Walkability 
Scale (NEWS), Pedestrian Environmental Data Scan (PEDS), QUALITY neighborhood 
obesogenic potential diagnosis (QUALITY-NHOOD), Senior’s Walking Environmental 
Assessment Tool-Revised (SWEAT-R), Systematic Pedestrian And Cycling Environment 
Scan (SPACES), Virtual Systematic Tool for Evaluating Pedestrian Streetscapes (Virtual- 
STEPS), Combination of CANVAS, Irivine-Minnisota inventory (Irivine), PEDS, and Project 
on Human Development Chicago Neighborhoods (PHDCN). In parallel, 28 studies 
employed unvalidated tools, which were typically developed by investigators them
selves to meet the specific needs of their research.

Among single studies, only S-VAT and MAPS were used in multiple countries: six 
studies harnessed S-VAT, deploying it across five European cities: Belgium, France, 
Hungary, the Netherlands, and the United Kingdom. Meanwhile, two studies tapped 
into MAPS, employing it within a broader international context that encompassed five 
cities spanning Australia, Belgium, Brazil, China, and Spain. The remaining studies were 
conducted in single countries and used various BEA tools (as depicted in Figure 3(a)). 
For example, six studies used MAPS across four countries (Belgium, Brazil, Japan, and 
the United States), while one study employee S-VAT (the Netherlands). In contrast, 
ANC, CANVAS, and PEDS were primarily used within the United States, while SSO, 
SWEAT-R, and Virtual-STEPS were used in both Canada and the United States. In 
Europe, the Environmental Google Street View-Based Audit-Cycling to School (EGA- 
Cycling) tool found utility specifically in Belgium. Besides, SPACES made appearances 
in both New Zealand and Spain. Among those studies, S-VAT and Virtual-STEPS were 
used only by the research groups who developed them, while other auditing tools 
were utilized by at least two or more research groups (Figure 3(b)).

In terms of scale, tools, such as PEDS, S-VAT, SPACES, SSO, SWEAT-R, and Virtual- 
STEP have been used at city scales, including single-city (n¼ 12) and multi-city (n¼ 7) 
studies (as depicted in Figure 4). The rest tools (ANC, EGA-Cycling, MAPS) have been 
conducted at varying scales, spanning county (n¼ 1), state (n¼ 4), and city (n¼ 13). It 
is noteworthy that CANVAS stands out as the sole tool applied at the national scale 
(n¼ 1), although it is worth highlighting that the majority of studies using CANVAS 
were still primarily conducted at the city (n¼ 7) and county scale (n¼ 1).

Audited built environment attributes and their types

Frequently audited built environment attributes included street-related features (e.g. 
street lights, street parking, and streetscape aesthetics) (n¼ 52), sidewalk-related fea
tures (e.g. width, buffers, and continuity) (n¼ 49), and traffic-related features (e.g. sig
nals, volume, public transit stops, and environment) (n¼ 47). Other notable attributes 
include land use (n¼ 33), facility-related features (n¼ 28), visual perceptions (e.g. aes
thetics) (n¼ 25), and social environment (e.g. safety) (n¼ 16) (as detailed in Figure 5, 
see Supplementary Appendix Table S1). The selection of these attributes often aligned 
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Figure 3. An overview of the studies using different built environment auditing tools in different 
countries, (a) represents the number of these tools within different countries (in parentheses), (b) 
represents the number of these tools that have been applied by different groups and in various 
studies. ANC: active neighborhood checklist; BEA tools: built environment auditing tools; CANVAS: 
computer assisted neighborhood visual assessment system; EGA-Cycling: environmental Google 
street view-based audit-cycling to school; MAPS: Microscale Audit of Pedestrian Streetscapes; PEDS: 
pedestrian environmental data scan; S-VAT: SPOTLIGHT-Virtual Audit Tool; SPACES: systematic ped
estrian and cycling environment scan; SSO: systematic science observation; SWEAT-R: Seniors’ 
Walking Environmental Assessment Tool—Revised; Virtual-STEPS: Virtual Systematic Tool for 
Evaluating Pedestrian Streetscapes.
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with the specific aims of the auditing, reflecting the distinct classifications within the 
field. For example, urban morphology studies focused on auditing land use, while 
transportation and mobility studies typically zeroed in on sidewalk-related features. 
Studies on health and well-being, socio-economic, and tool validation or development 
typically audit multiple built environmental variables to capture the comprehensive 
characteristics of the built environment. These audited attributes manifested as either 

Figure 4. The number of the included studies using different built environment auditing tools at 
different scales (in parentheses). Note: N—National; S—State (e.g. in the US) or equivalent unit; 
C—City; Cn—multicity; County—County or equivalent unit. ANC: active neighborhood checklist; 
BEA tools: built environment auditing tools; CANVAS: computer assisted neighborhood visual 
assessment system; EGA-Cycling: environmental Google Street view-based audit-cycling to school; 
MAPS: Microscale Audit of Pedestrian Streetscapes; PEDS: pedestrian environmental data scan; 
S-VAT: SPOTLIGHT-Virtual Audit Tool; SPACES: systematic pedestrian and cycling environment scan; 
SSO: systematic science observation; SWEAT-R: Seniors’ Walking Environmental Assessment Tool— 
Revised; Virtual-STEPS: Virtual Systematic Tool for Evaluating Pedestrian Streetscapes.
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continuous or categorical variables. The continuous variables included the number 
(n¼ 12) and percentage (n¼ 13) of the attributes, such as the number of bicycles and 
the green area-to-street ratio. Conversely, the categorical variables signified the pres
ence or absence of attributes (n¼ 75), such as the presence of sidewalks, traffic sig
nals, and litter. Other studies considered categorical attributes that spanned various 
levels (n¼ 38), such as different speed limits. To further assess the quality of these 
built environment attributes, researchers employed Likert scales (n¼ 27) or scoring val
ues (n¼ 9). These metrics offered quantifiable assessments, spanning criteria, such as 
the cleanliness of streets and properties or conditions of streets, thus contributing to a 
nuanced evaluation of the built environment.

Most studies (n¼ 64), undertook an evaluation of the reliability associated with the 
assessed built environment attributes. This evaluation commonly employed estab
lished metrics, including the percentage of agreement (n¼ 28), Cohen’s Kappa 
(n¼ 19), intra-classes coefficients (n¼ 14), Cronbach’s a (n¼ 3), and other less fre
quently used indexes (n< 3). The choice of reliability assessment metrics was contin
gent upon the nature of the audited variable. When the audited variables were 
continuous, the correlation coefficients were the favored option, while when variables 
audited were categorical, the percentage of agreement, Cohen’s Kappa, intra-classes 
coefficients (ICC), and Cronbach’s a were preferable choices, serving as robust indica
tors for testing the reliability.

The choice of indicators for audited built environment attributes differs among 
studies. Due to the ambiguity in some auditing characteristic definitions, the reliability 
and validity of gathered audit measures tend to be higher for objective attributes 

Figure 5. The count of studies auditing different built environment attributes.
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than subjective assessments. Among audited attributes, the presence of a sidewalk, a 
typical objective attribute, has the highest average reliability (0.837) across the major
ity of studies, exceeding the noteworthy threshold of 0.7 (as illustrated in Figure 6). In 
contrast, subjective measurements, such as the quality of the environment, exhibited 
lower reliability due to the potential influence of different auditors, as exemplified by 
aesthetics, which scored an average reliability of 0.505 in Figure 6.

Comparisons of the reliability of built environment attributes across different coun
tries posed challenges due to the diversity of auditing tools, reliability indices, and 
measurement scales employed. Direct comparisons of unvalidated auditing tools 
proved intricate, given the inherent variations in auditing items they exhibited. In 

Figure 6. The average reliability indexes among different built environment attributes. Ck: Cohen’s 
kappa statistics; Fk: Fliess’ kappa statistic; ICC: intra-class coefficient; IoU: intersection-over-union 
metric; PABAK: prevalence-adjusted bias-adjusted kappa coefficient; r: correlation coefficients; %A: 
% of agreement.
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contrast, validated auditing tools demonstrated their utility in facilitating cross-regional 
comparisons, including ANC, CANVAS, EGA-Cycling, PEDS, and Virtual-STEPS, which 
were predominantly applied within specific countries, as illustrated in Figure 4. Among 
these tools, MAPS stood out as the sole suitable tool for facilitating cross-country reli
ability comparisons. Upon our analysis, a clear pattern emerged: MAPS, when con
ducted in the US, exhibited notably higher reliability, with an average Cohen’s Kappa 
coefficient of 0.55. In comparison, MAPS implementations in five global cities 
(Australia, Belgium, Brazil, China, and Spain) demonstrated slightly lower reliability, 
with an average intraclass correlation coefficient (ICC) of 0.48.

Several studies using the same auditing tool (S-VAT) were conducted in five 
European cities across different countries. Notably, safety and aesthetics showed the 
lowest reliability, as evidenced by Cohen’s kappa statistics and Cronbach’s a< 0.5. In 
contrast, land use and food outlets consistently demonstrated higher reliability with 
Cohen’s kappa statistics and Cronbach’s a surpassing 0.7. Furthermore, when it came 
to auditing walking and cycling infrastructure, two studies presented divergent reliabil
ity results. The reliability of auditing walking infrastructure was reflected in Cohen’s 
kappa statistics exceeding 0.82, whereas for the cycling infrastructure, Cohen’s kappa 
statistics fell below 0.3.

Purpose and application scenarios of validated auditing tools

Most of the validated auditing tools included in this study were designed to investi
gate the associations between the built environment and health-related behaviors and 
outcomes, such as cycling, environmental exposure, obesity, physical activity, and 
walkability (as detailed in Table 1, n¼ 8). Virtual-STEPS is the only tool designed to 
audit infrastructure across various levels. Specifically, SSO is a more generalized social 
science methodology to examine phenomena or aspects of behavior beyond health- 
related concerns. Therefore, these validated auditing tools have diverse application 
scenarios and audited attributes due to their intended purposes (Table 1). It is impor
tant to underscore that the choice of auditing tools should be thoughtfully guided by 
the specific research objectives, ensuring alignment with the desired outcomes.

The strengths and weakness of the validated auditing tools varied among the differ
ent studies. In terms of weakness, some tools lacked certain built environment attrib
utes related to physical activity (ANC) and complex micro-scale elements (MAPS), 
while others did not have a uniform, standard checklist for BEA (SSO). Moreover, some 
tools audited the built environment according to observation locations through the 
internet, potentially raising concerns about the confidentiality of human subjects 
(CANVAS). The remaining tools may be affected by system errors in the sampling pro
cess, for example, audited street segments generated by self-reported cycling routes 
to schools instead of actual routes (EGA-Cycling). On the flip side, these tools exhib
ited notable strengths. MAPS, for instance, offers a more comprehensive assessment 
as it provides scores at four levels, routes, crossings, segments, and cul-de-sacs. 
CANVAS, as a web application program, has the great potential to integrate longitu
dinal data. Other tools contribute to specific health-related studies, such as EGC- 
Cycling for assessing the physical environment along cycling routes, PEDS for 
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assessing the walking environment, S-VAT for assessing the subjective obesogenic 
environment (obesogenic environment, a fundamental concept in public health, per
tains to an environment or context that actively fosters and facilitates the onset of 
obesity in individuals), SPACES for assessing the walking and cycling environment, and 
SWEAT-R for physical activity-related aging studies among elders.

Discussion

Enhancing accuracy in quantifying built environment features

Existing SVI-based auditing methods struggle to accurately assess certain built environ
ment attributes that are less quantifiable than dichotomous attributes, such as the 
presence of sidewalks and traffic lights, etc. For example, even the lowest reliability 
observed in accessing dichotomous transport environment attributes surpassed that of 
evaluating the social environment (Ben-Joseph et al. 2013). Auditing results for those 
attributes often differ between auditors and across time periods (Cândido et al. 2018). 
Such attributes typically lack well-defined criteria, systematic schemes of assessment, 
and accurate geometric information—such as the width of the sidewalk—and may be 
influenced by subjective factors including individuals’ perceptions related to neighbor
hood aesthetics and safety. We believe addressing these challenges is more complex 
than image classification and semantic segmentation through computer vision techni
ques alone (Jia et al. 2019a, 2020).

Integrating artificial intelligence (AI) with computer vision holds great potential for 
overcoming these technical barriers. AI and computer vision can collaboratively create 
a standardized dataset of commonly built environmental features with consistent or 
relatively stable geometric information, such as cars. By using these features as refer
ences within the SVI, geometric information for other features can be inferred from 
the degrees of distortion, as determined by computer vision. Nguyen and colleagues 
have made substantial contributions to the field of environmental auditing through 
the application of AI and computer vision. They leveraged deep learning models to 
construct a comprehensive neighborhood characteristic database derived from Google 
SVI data, covering regions across the United States. Their research endeavors, spanning 
multiple publications (Nguyen et al. 2018, 2019, 2020, 2021, 2022, Yue et al. 2022), 
have centered on investigating the intricate relationships between the built environ
ment and various health outcomes. Of particular significance is their pioneering work 
in providing practical examples of auditing items, which encompass elements, such as 
buildings, crosswalks, and greenery. This exemplifies the utilization of AI and computer 
vision techniques in conducting audits, thereby advancing the methodology in this 
domain. For instance, one study conducted in China utilized Tencent SVI and a deep 
learning model to assess the quality of the street space (Tang and Long 2019). 
However, it is worth noting that the number of audited attributes is still much lower 
than auditing by labor efforts. Also, the development of end-to-end deep learning 
models, spanning from initial input to final output variables, may be particularly suited 
for the Likert-scale variables like neighborhood safety. This serves to minimize subject
ivity bias and inconsistencies among auditors. For example, Google SVI has been used 
to infer the perceived safety (safety scores ranging from 0 to 10) (Zhang et al. 2021), 
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while Tencent SVI has been employed to measure physical disorder (a scoring value 
ranging from 0.16 to 0.48) in China (Chen et al. 2022). In addition, despite the rapid 
development of methodologies, we found that most studies still heavily relied on 
human labor rather than fully harnessing the capabilities of computer vision techni
ques. In fact, the number of audited streets in existing studies has been <1,000 and 
has been limited to a single city or a small number of cities. The integration of AI has 
the potential to scale up SVI-based built environmental auditing to encompass a large 
study area, which is often necessary for large-sample health datasets, such as epi
demiological cohort studies. For instance, a study conducted in China examined the 
associations between SVI-derived urban neighborhood disorder and the long-term 
recurrence risk of patients with acute myocardial infarction (Zhang et al. 2023).

Choosing a suitable SVI-based BEA method and enhancing robustness

Our study showed that SVI-based BEA is comprised of virtual audits by labors (VL) and 
computer-assisted audits (CA) (81.3 vs. 18.7%, Supplementary Appendix Table S1). VL 
is labor-intensive, which hinders large-scale BEA. Typically, the number of audited units 
is <1,000, and the scope is limited to a single city. However, the strength of VL lies in 
the customization of audited built environment attributes to cater to specific research 
objectives. For example, a series of studies used S-VAT but they audited different 
attributes based on their research needs (Bethlehem et al. 2014, Compernolle et al. 
2016). In contrast, CA faces challenges in expanding the spectrum of audited attrib
utes, particularly subjective ones. CA relies on extracting the required attributes from 
semantic segments of deep learning models, which were fixed and depended on the 
labeled training datasets. For example, while CA could audit the green space and 
crosswalk, it may not be able to access subjective built environmental conditions that 
are not labeled in the training dataset, such as the availability of dedicated places for 
walking or cycling (Keralis et al. 2020). Despite this limitation, CA can be applied to a 
wider geographical extent, e.g. covering national or regional scales, while efficiently 
obtaining objective attributes and avoiding the need for labor-intensive work. 
Researchers should choose the best method according to the strength of SVI-based 
BEA methods and their research goals.

Validating SVI-based BEA results demands caution, and further practical studies are 
needed, especially in developing countries. Validation of VL requires multiple auditors 
whose results can be compared to enhance validation effectiveness under a uniform 
training process. If possible, the field auditing results can complement the validation 
process. Additionally, when it comes to VL-based audit tools, particularly those vali
dated ones, our findings indicate that they tend to exhibit higher reliability in the 
country where they were originally developed as compared to their application in 
other countries (Millstein et al. 2013, Fox et al. 2021, Koo et al. 2022). This discrepancy 
can likely be attributed to the differences between auditing attributes initially formu
lated to suit the specific built environment of the country in which the tool was cre
ated, and those in different countries. For CA, the validation mostly relied on the 
validation datasets of the deep learning model, which are scarce in developing coun
tries. Tencent SVI was leveraged to assess physical disorder within a large urban area 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1149

https://doi.org/10.1080/13658816.2024.2336034


in China (Chen et al. 2022, Li et al. 2022a). A developed virtual audit platform encom
passed 16 attributes that evaluate the quality of street spaces across five dimensions 
(Li et al. 2022a). These studies, as the practical case studies in the realm of BEA, offer 
valuable insight and a blueprint that can be adapted for other developing countries. 
Thus, there is room for improvement in the validation of the SVI-based BEA, with par
ticular attention to the reliability measurements of built environment attributes during 
validation.

Reliability measurements in SVI-based built environment audits are contingent on 
the specific attributes being audited and the auditing methods employed. They vary 
depending on whether the audited environment attributes are subjective or objective 
in nature. For example, Cohen’s Kappa should be used in categorical attributes, such 
as the presence of sidewalks, and relative correlation coefficients for continuous attrib
utes, such as car counts, while different auditing methods employ distinctive assess
ment indicators: VL primarily uses consistent assessment indicators, such as the 
agreement of prevalence and CA relies on traditional machine learning model per
formance evaluation metrics, such as the F1 score, R2, and AUC.

Considering existing validation and reliability measurements, auditing built environ
ment attributes still faces challenges. Objective attributes may focus on obtaining 
more accurate geometric information, while subjective attributes need the establish
ment of a scoring standard for assessing built environment conditions, thereby making 
the auditing results more robust. For example, the Place Pulse dataset was an effective 
solution for assessing built environment conditions, aiming to map urban areas per
ceived as safer, livelier, wealthier, more active, beautiful, and friendly (Salesses et al. 
2013, Naik et al. 2014, 2016, 2017). We believe that AI-powered BEA tools may be 
available in the future based on this summarized characteristic of existing tools in this 
study.

Addressing time lag and spatial limitations of SVI

Current SVI-based auditing grapples with issues related to time lag and spatial limita
tions, potentially affecting the accuracy of BEA. The data update cycle of SVI for cer
tain locations has been observed to be relatively lengthy, particularly in rapidly 
expanding urban areas. Moreover, images were updated progressively and independ
ently across space, which means that some adjacent locations’ SVIs may not be cap
tured simultaneously. For example, the newly taken SVI had the highest correlation 
coefficient with field auditing (Wilson et al. 2012). Additionally, the capturing method 
of SVI only records views from the street, this shortcoming was especially evident in 
developing countries where images are primarily available only along major roads.

SVI taken in field surveys and generated from other sources (e.g. commercial pro
viders of panoramic images, Giga PanVR , and Lancers) could supplement Google SVI. 
For instance, Giga PanVR has demonstrated a high sensitivity of up to 80%, making it a 
viable alternative when Google SVI is unavailable (Twardzik et al. 2018). The increasing 
availability of other SVIs in developing countries also provides opportunities for carry
ing out BEA and designing corresponding auditing tools. Both Baidu and Tencent SVI 
have expanded their coverage to include more than 297 cities in China. Nevertheless, 
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SVIs from other sources may be insufficiently accurate. In a comparison study of audit
ing results, Google SVI showed higher reliability in measuring small features (e.g. level
ness and condition of sidewalks, obstructions, and presence of bike racks) than field 
surveys, Google Maps, and Bing Maps (Ben-Joseph et al. 2013). Consequently, when 
combining SVI data from various sources, it is essential to exercise caution and con
duct reliability and consistency testing before utilization.

Bridging the BEA and urban exposome observation through SVI

SVI performs exceptionally well in capturing environmental variables, thereby advanc
ing future environmental health research. It enables the measurements of urban expo
some surrounding the participants in large cohorts (Jia et al. 2019b). The urban 
exposome comprises a collection of environmental factors representing an individual’s 
real-life exposure to the outdoor urban environment, with potential implications for 
human health (Jia 2019). These factors include the built environment, air pollution, 
road traffic-related indicators, weather, and natural space (Jia and Stein,2017 Robinson 
et al. 2018, Nieuwenhuijsen et al. 2019, Ohanyan et al. 2022). Consequently, the SVI- 
based BEA could be an effective tool to observe the urban exposome. For instance, 
frequently audited built environment attributes are regarded as the most important 
obesogenic urban exposome. These include factors related to traffic (Luo et al. 2021, 
Wang et al. 2021), sidewalks (Wei et al. 2021), neighborhood aesthetics (Qu et al. 
2021), walkability (Yang et al. 2021), land use (Jia et al. 2021), and bike lanes (Pan 
et al. 2021). In most of the previous cross-sectional or cohort studies, data on an indi
vidual’s surrounding urban exposome were self-reported by the participants (Gubbels 
et al. 2011). Self-reported data, however, can suffer from bias from participants. Using 
historical SVI and BEA could help extract the built environment attributes, including 
sidewalks (Hamim et al. 2023), traffic-related factors (Dai et al. 2023, Hu et al. 2023) 
and socio-economics factors (Fan et al. 2023), to mitigate bias. This would also allow 
for the comparison of self-reported results, validation of datasets to improve the qual
ity of large cohort data, observation of urban exposome during the life course, and 
investigation of the potential causal associations between the built environment and 
human health outcomes.

Lessons learned

Through a systematic review of the commonly audited built environment attributes 
and auditing tools, our findings provide a comprehensive understanding of the state- 
of-the-art SVI-based auditing approaches and offer insights into future directions for 
development. The reliability of these audits varies depending on the type of attribute 
and the assessment tool used. We have learned that objective attributes, such as the 
presence of a sidewalk, generally yield higher reliability, while subjective assessments 
may be influenced by auditor biases, resulting in lower reliability. The use of standar
dized auditing tools, such as S-VAT, across multiple cities demonstrates the potential 
for improved comparability and generalizability of research findings. Considering the 
number of research groups that used these tools, ANC and MAPS were identified as 
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the two most widely accepted auditing tools. Furthermore, many standardized audit
ing tools have been exclusively implemented in specific countries. This is often attrib
uted to auditing of those attributes that are relevant in these particular countries, 
which may not necessarily align with conditions found in other nations. Consequently, 
this localization of attributes has resulted in higher reliability when the tools are 
applied in the country where they were originally developed, as compared to their 
performance in other countries. The varying levels of reliability for different attributes 
within the same tool indicate the need for further refinement and standardization of 
assessment criteria.

The methodology’s merits lie in the adoption of a classification of auditing aims 
and the integration of various built environment features, ultimately allowing research
ers to better understand the relationship between urban design and public health. 
The broader impact of these findings can inform urban planning and policy-making 
efforts to promote healthier and more sustainable living environments. Achieving 
higher reliability in built environment audits requires a careful balance between 
objective and subjective attributes and the adoption of standardized tools and assess
ment criteria. This can lead to more robust research findings and an improved under
standing of urban environments, ultimately contributing to better-informed urban 
planning and policy decisions.

Conclusions

This systematic review summarizes the characteristics of the 96 relevant studies of 
BEA, highlights the current challenges in this area, and proposes potential solutions 
and future research directions. SVI performs well in capturing certain attributes of the 
built environment, consistently delivering high audit accuracy. Consequently, there is a 
pressing imperative: Firstly, we should integrate the power of AI with SVI to establish 
the standard dataset of commonly built environmental features with invariant or sta
ble geometric information. Secondly, we should explore the potential benefits of using 
multi-source SVI to facilitate the creating of spatially complete and temporally consist
ent urban scenes. Thirdly, it is vital to concentrate on customizing and validating BEA 
tools that are tailor-made for the unique contexts of developing countries. SVI holds 
immense potential to facilitate environmental health-related studies in the big data 
era, especially in urban exposome observation. Compared to alternative observation 
methods like remote sensing or field observation, SVI offers a cost-effective and highly 
efficient means of capturing the urban physical environment at eye level.

This review shows that SVI has so far proved to be a powerful data source that can 
be used for environmental auditing on many research topics. As SVI continues to gain 
popularity, and data collection and processing methods become more standardized, 
along with the potential expansion of the SVI databases in the future, we anticipate to 
have access to increasingly accurate spatio-temporal SVI data and cross-platform com
patibility in the future. SVI will then become a valuable data source in a growing array 
of research fields. This study underscores that advancements and adaptations in 
research methodologies will ultimately facilitate the seamless integration of this novel 
geospatial data type into diverse research disciplines.
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