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A B S T R A C T

The vertical developments in cities reshape the urban form and structure, and the influences on human liveability 
can be reflected by the variations in property values. The hedonic price model (HPM) is commonly employed in 
city-scale property valuation to unravel the hedonic values of different influential variables. In vertically 
developed cities, it necessitates the exploration of the hedonic value in the vertical dimension (3D), which was 
previously under-researched due to limited 3D data and the complexity of processing techniques. Recent studies 
use eye-level street view images (SVIs) for valuation, but the 3D perspective is still missing. This study proposes a 
novel 3D property valuation method using SVIs acquired from two angles, eye-level (pitch 0◦) and sky-view 
(pitch 90◦, upwards), and machine learning method to complete the 3D perspective and provide explain-
ability of 3D HPM. We also compared different valuation models – namely Ordinary Least Square (OLS), 
Geographically Weighted Regression (GWR), and Random Forest (RF) – using model performance metrics. Our 
main findings include: 1) 3D variables are statistically significant, and adding them improves the model per-
formance (R2 from 0.580 to 0.636 in GWR); 2) In the sky-view angle, the proportion of sky has a positive cor-
relation while the presence of buildings and trees are negatively correlated with property values; 3) RF 
outperforms OLS and GWR with the highest R2 (0.768) and the least RMSE (1669.60 yuan/m2), which dem-
onstrates its robust explainability and applicability for valuation. This study enriches the property valuation 
literature on the significance of the 3D variables and provides references to guide fair taxation and equal land use 
policy in vertically developed cities.

1. Introduction

As the outcome of urbanisation, cities are increasingly dense and 
compact in most of the world. In addition to horizontal expansions (x- 
and y-axis: horizontal dimension, 2D), significant vertical developments 
are happening in urban areas due to limited land availability and 
growing population (Wen et al., 2019). It includes the process of 
rebuilding – replacing the shorter and smaller buildings with taller and 
bigger ones and infilling – constructing new buildings in the vacant 
areas (Frolking et al., 2024). The buildings of different heights, struc-
tures and densities have created unique three-dimensional cityscapes, 
especially in the vertical direction (z-axis: vertical dimension, making it 
3D); they are considerably influential in urban climate, carbon emission, 
human health, and daily active travel behaviour (Alavipanah et al., 
2018; Li et al., 2016; Wang et al., 2020). Such aspects related to local 
living quality vary not only on a horizontal basis but also at the vertical 

dimension, which influences the property values. Despite the significant 
impacts 3D have on the environment, up till now, property valuation has 
failed to adequately quantify and reflect these impacts as mass valuation 
methods and data are still 2D-based in practice (Ying et al., 2021, 2023). 
In vertical cities with generous amounts of buildings, the famous mantra 
in the real estate sector, “location, location, location”, needs conceptual 
and technical re-interpretation from a 3D perspective.

Property valuation is a systematic process of determining the values 
of locations correlated to the property, which has a considerable influ-
ence on different stakeholders, including homeowners, taxation au-
thorities, and policymakers. The value recognised by consumers in the 
property market reflects not only the value of the property itself but also 
the desirability and accessibility of the surrounding environment, which 
significantly contributes to their living comfort. The hedonic price 
model (HPM) has been extensively used in city-scale mass property 
valuation (Lancaster, 1966; Rosen, 1974). It decomposes the value of a 
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property to understand the economic impacts of variables under 
different attributes (e.g., physical, locational, and environmental). The 
fundamental valuation model is Ordinary Least Square (OLS), which 
assumes a linear relationship between the property value and the 
influential variables. Advanced models which can capture the spatial 
heterogeneity and temporal variations of the property market have been 
widely applied, such as Geographically Weighted Regression (GWR) and 
Geographically and Temporally Weighted Regression (Huang, Wu, & 
Barry, 2010). The applications of data-driven models (e.g., machine 
learning) in valuation have also grown, among which Random Forest 
(RF) has proven its robustness and explainability (Antipov et al., 2012).

Numerous studies have utilised HPM to examine the relationships 
between certain variables and property values with a 2D perspective 
(Wen et al., 2014; Ying et al., 2021), such as the proximity to and the 
density of certain public goods and services. From a theoretical 
perspective, HPM creates a framework to recognise the economic values 
of different attributes and variables in properties. In the context of 
vertically developed cities, the spatial changes happening in 3D make 
multi-facet impacts in view, visibility and sunlight exposure, which are 
considerably linked to living comfort and property values (Dai, Felsen-
stein, & Grinberger, 2023; Yamagata et al., 2016). 3D geoinformation 
can specify nuanced 3D spatial differences that 2D methods and data are 
not able to capture by nature and build a more accurate valuation sys-
tem. Therefore, valuation needs to adapt to the vertical spatial changes 
in dense cities and reflect their impacts in the form of hedonic value. 
Recent studies have already called for attention in 3D from the per-
spectives of different stakeholders (Wu et al., 2024). However, academic 
interest and scientific understanding in valuing 3D are still scarce and 
segmented (Fleming et al., 2018; Ying et al., 2021; Yu et al., 2007), 
mainly due to the difficulty of 3D data acquisition and the complexity of 
processing techniques (Ying et al., 2023). Points of interest (POI) data, 
commonly employed in valuation studies, normally do not include 3D 
geoinformation. Satellite and aerial images-derived data are primarily 
used for extracting 2D variables (e.g., greenery coverage) in HPM rather 
than 3D. Light Detection and Ranging (LiDAR) enables the measurement 
of rich 3D geoinformation, but data collection poses challenges in 
large-scale acquisition due to the high costs. One study conducted in 
Austria used LiDAR to increase the prediction accuracy of HPM, and 
with only 48 flats selected still came with high-level manual efforts 
(Helbich et al., 2013).

Nevertheless, the emergence of street view images (SVIs) opens up 
opportunities to see cities with low costs and wide coverage from a 3D 
perspective (Tang et al., 2019). Artificial intelligence (AI) further ad-
vances the documentation of semantic streetscape and complex 3D 
analysis to address different urban challenges, such as bikeability (Dai 
et al., 2023b) and street crime (Yue et al., 2023). SVIs capture 
street-level features (e.g., building facades, greenery, and visible sky) 
from an eye-level angle, which are important variables in estimating 
property values (Dai, Felsenstein, & Grinberger, 2023; Kara et al., 2023; 
Zhang et al., 2018). Compared to SVIs, satellite and aerial images are 
typically acquired from a top-down perspective rather than a human 
viewpoint for environmental monitoring; the lack of semantic details 
along the z-axis makes POI ineligible to provide rich 3D geoinformation 
rather than an abstract point. Besides, the observation point of SVIs can 
be freely adjusted in different pitches (from 0◦, eye level, to 90◦, up-
wards). The eye-level (pitch 0◦) angle offers rich street features close to 
the ground, and the sky-view angle (pitch 90◦, upward) offers the op-
portunity to see upward as an observer. Thanks to AI advances, the se-
mantic segmentation of the sheer amount of SVIs has become efficient. 
Deep learning is widely adopted to learn and extract features from raw 
image data without explicit feature selection (Persello et al., 2017). 
Various pre-trained models (e.g., SegNet (Badrinarayanan et al., 2017)) 
are available; high-resolution street scene open datasets (e.g., City-
Scapes (Cordts et al., 2016)) offer rich image samples across diverse 
semantic categories. There are already studies using SVIs to estimate the 
impact of eye-level street features on property values (Fu et al., 2019; 

Suzuki et al., 2022; Wang, 2022), but the sky-view angle (pitch 90◦, 
upward) is overlooked without exception. This missing angle is an 
important measurement of street openness and the higher-up scenery 
along the z-axis, creating possibilities for estimating the hedonic value of 
3D.

Drawing from the facts above, we expect to answer the following 
research questions: 1) How do 3D variables affect property values? 2) 
Are there any differences in the impacts of 3D variables from eye-level 
angle (pitch 0◦) and sky-view angle (pitch 90◦)? 3) Does machine 
learning provide better explainability than OLS or GWR? Under the 
umbrella of HPM, this study proposes a novel 3D property valuation 
method using SVIs in two angles to extend 2D HPM to 3D HPM and 
machine learning to provide explainability of 3D HPM. Based on the 
classic 2D HPM, we constructed semantic segmentation on SVIs and 
derived 3D variables correspondingly. After that, we built HPM with 
different modelling methods (OLS, GWR and RF), and we identified the 
influences of 3D variables and offered explainability to 3D HPM.

To the best of the authors’ knowledge, the concept of bringing SVIs 
from two angles to form a full 3D perspective has not yet been applied to 
mass property valuation at a city scale. This study enriches the property 
valuation literature on the significance of 3D in HPM and provides ref-
erences to guide fair property taxation and equal land use policy in 
dense cities regarding access to 3D aspects. It bridges the gap between 
the theoretical HPM framework and practical land use policy-making 
needs in vertical cities. The research results will be of interest to prop-
erty valuers, researchers, and local government involved in urban sus-
tainable development and housing policy-making.

2. Materials and methods

2.1. Study area

The fast urbanisation in China is characterised by the construction of 
generous amounts of high-rise buildings and increased building height 
(Li et al., 2020). The most significant changes happen in first- and 
second-tier cities (e.g., the provincial capitals) (Yang et al., 2022). Xi’an 
ranks 62nd among cities with the most high-rise buildings worldwide 
and 29th nationwide (https://www.skyscrapercenter.com/cities). It is 
the capital of Shaanxi Province and the political, economic and educa-
tional centre of northwest China (Fig. 1). It is located in the centre of the 
Guanzhong Plain, with a population of 12.99 million by 2022 and 
coverage of 10,180 km2 (Shaanxi Provincial Bureau of Statistics & NBS 
Survey Office in Shaanxi, 2023). The main urban region (659.06 km2) is 
the study area. We highlight that Xi’an is under housing market control 
to curb speculations and lower excessive price hikes (Central Committee 
of the Communist Party of China, 2017). This policy control covers most 
first- and second-tier cities in China and influences the first-hand and the 
second-hand market at the same time.

2.2. Data source

2.2.1. Property value database
The geocoded property value database documents the actual trans-

action records with second-hand residential property at the household 
level and physical variables, such as built year, floor level, and building 
type. It was provided by Lianjia (https://bj.lianjia.com), one of China’s 
largest real estate brokers. To ensure temporal consistency and minimise 
the impact of the COVID-19 pandemic, we selected the period dated 
from January 1st, 2020 to May 31st, 2020, inclusive. There are, in total, 
8055 records after data cleaning. We decided to use transaction prices 
rather than list prices to be truly reflective of the market fluctuations. 
We focused on only apartments in residential buildings in the second- 
hand market as the local government put a price cap on the first-hand 
residential property market. The details are referred to in Table 1
under the category of physical variables.
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2.2.2. Point of interest (POI)
POI was acquired from AutoNavi Maps (https://lbs.amap.com/), 

which is one of the leading map service providers in China. The 
collection time is December 2020. There are 23 categories, including 
restaurants, subway stations, and hospitals. It was used to generate 
locational variables, such as the distance to the nearest shopping mall 
and the density of the convenience stores. The details are referred to in 
Table 1 under the category of locational variables.

2.2.3. Street view images (SVIs)
SVIs were collected from Baidu Maps, another China’s leading map 

service provider (https://map.baidu.com). They were used to form 3D 
variables (Table 1) via semantic segmentation. The workflow of mass- 
downloading SVIs started with generating the sampling points with an 
interval of 10 m along the OpenStreetMap (https://www.openstree 
tmap.org) road networks (Fig. 2a). Second, we determined the head-
ing direction and pitch, two parameters in image customisation (Fig. 2b 
and c). Heading direction defines the compass heading of the camera 
with the value from 0◦ to 360◦. Four heading directions (0◦, 90◦, 180◦, 

Fig. 1. The study area. The red polygons represent the adminstrative boundaries of Shaanxi Province (upper-left) and Xi’an city (upper-right); the purple houses 
(bottom-right) rerpresent two typcial high-rise buildings.
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270◦) were selected for a full surrounding view. The pitch represents the 
up/down angle at which the street view is taken. Compared to other 
studies that adopt pitch 0◦ for eye-level only, our strategy incorporates 
two pitches (0◦ and 90◦) to collect both eye-level images reflecting 
horizontal streetscape and sky-view images reflecting the vertical sky 
openness (Fig. 2d and e). Finally, we determined the acquisition time: 
2019 or 2020. Our objective is to improve the quantity of SVIs by 
employing a compact sampling point density and a comparatively in-
clusive acquisition timeframe. Preliminary assessments indicated that 
not all sampling points have images, and annual updates are not guar-
anteed. Ideally, if images are available, eight images are collected per 
year per sampling point. Each image has 1024 * 512 pixels. In total, we 
generated 83,925 sampling points and downloaded 737,704 images.

2.3. Methods

As shown in Fig. 3, this study is conducted within the HPM frame-
work, which consists of three steps. We first generate physical, loca-
tional variables, extract 3D variables from SVIs (2.3.1, step 1 and 2), and 
then construct HPM in different valuation models, namely OLS, GWR 
and RF (2.3.2, step 3).

2.3.1. Physical, locational and 3D variables generation
The physical variables were interpreted from texts into numerical 

values from the property value database. The locational variables were 
calculated using geo-locations of properties and POI (2.2.2). The vari-
able selection was based on existing studies, and we aimed to have a 

classic list in Table 1 because our paper focuses on 3D variables (Wu 
et al., 2020; Zhang et al., 2020).

3D variables were generated via SVIs semantic segmentation. Se-
mantic segmentation for imagerys is time-consuming and computation- 
intensive due to the pre-labelling demands of imagery collection and the 
pre-training and optimising the algorithm (Persello et al., 2014). We 
applied a ready-to-use segmentation package, which has been proven to 
have low segmentation errors and high efficiency (Yao et al., 2019). It 
employs a Fully Convolutional Network pre-trained by ADE20K dataset 
(https://groups.csail.mit.edu/vision/datasets/ADE20K) to semantically 
segment different categories in each image. The output is the percentage 
of the recognised category. ADE20K dataset has over 20,000 multiple 
scene-centric images and includes 150 semantic categories. We selected 
3D variables which have already been empirically proven important in 
living comfort in urban studies and are considered meaningful to our 
study (Wen et al., 2014; Zheng et al., 2023): sky, tree and building for 
sky-view images to form 3Dss, 3Dst, and 3Dsb; sky, greenery (tree and 
grass), building, and paved areas (road and sidewalk) for eye-level im-
ages to form 3Des, 3Der, 3Deg, 3Deb, 3Der, and 3Dew. Fig. 4 shows an 
example of segmentation. After the semantic segmentation, the prop-
erties and SVIs were linked based on their geographical locations. First, 
a buffer centered on the property with a radius of 800 m was created to 
involve images falling within. Then, the values of the specific categories 
of all the images were averaged to form the corresponding 3D variables. 
In this case, we did not distinguish years (e.g., if one sampling point has 
images in 2019 and 2020, both years are included). We tested the radius 
from 400 m to 1 km with an interval of 100 m. 800 m was selected with 

Table 1 
The descriptive statistics and explanations of variables.

Category Variable name Variable definition Mean Min Max Std

Dependent 
variable

Average price The average property value (unit: yuan/m2) 14,318 1196 47,384 3936.30

Physical 
variables

Elevator (ELEV) Dummy variable that evaluates whether the property has an elevator service. 1 =
it has an elevator, 0 = no elevator.

0.90 0 1 0.30

Decoration (DECO) Dummy variable that evaluates the decoration level of the property. 1 = it has 
fine decoration, 0 = it has no/not enough decoration.

0.54 0 1 0.50

Relative floor (REL_floor) Categorical variable that evaluates the relative location of the property in the 
building. 1 = low floor level, 2 = middle floor level, 3 = high floor level

2.08 1 3 0.79

Orientation (ORI) Dummy variable that evaluates whether the property has an orientation to south. 
1 = it is oriented to south; 0 = it is oriented to north/east/west.

0.66 0 1 0.47

Total floor (TOTAL_floor) Numerical variable that measures the total floor number of the building where 
the property locates.

23.8 1 39 9.70

Area number(AREA_num) Numerical variable that measures the property size in the (unit: m2) 91.47 13.02 457.12 34.70
Room number (ROOM_num) Numerical variable that measures the total room number of the property 2.29 1 8 0.81
Built year (BUILT_y) Numerical variable that documents when the property is built. 2011 1980 2020 4.91

Locational 
variables

Distance to CBD (DIST_cbd) Euclidean distance from the property to the traditional Central Business District 
(CBD) -Bell Tower (Zhong Lou) in kilometre

7.78 0.33 17.54 2.67

Distance to shopping mall 
(DIST_shop)

Euclidean distance from the property to the closest shopping mall in kilometre 0.95 0.01 3.99 0.60

Distance to hospital (DIST_hos) Euclidean distance from the property to the closet general hospital (sanjia yiyuan) 
in kilometre

2.54 0.01 9.27 1.64

Distance to park (DIST_par) Euclidean distance from the property to the closet park in kilometre 1.23 0.07 6.27 0.69
Density of convenience shop 
(DEN_con)

The count of convenience shops within 1 km vicinity centered from the property 88.04 1.00 361.00 58.64

Density o educational facility 
(DEN_edu)

The count of educational facilities (primary school, middle school, universities 
and colleges) within 1 km vicinity centered from the property

19.97 0.00 157.00 17.48

Density of sports and recreation 
facility (DEN_sar)

The count of sports and recreation facilities within 1 km vicinity centered from 
the property

54.85 0.00 265.00 43.26

Density of restaurants 
(DEN_res)

The count of restaurants within 1 km vicinity centered from the property 447.6 0.00 1977.00 320.95

Density of bus stops (DEN_bus) The count of bus stops within 1 km vicinity centered from the property 17.91 1.00 68.00 9.31
Density of subway (DEN_sub) The count of subway stations within 1 km vicinity centered from the property 0.87 0.00 4.00 0.84

3D variables 3Dss The proportion of sky in sky-view images (pitch 90◦) 0.51 0.07 0.84 0.11
3Dst The proportion of tree in sky-view images (pitch 90◦) 0.04 0.00 0.18 0.02
3Dsb The proportion of building in sky-view images (pitch 90◦) 0.10 0.00 0.20 0.03
3Des The proportion of sky in eye-level images (pitch 0◦) 0.15 0.02 0.42 0.04
3Det The proportion of tree (pitch 0◦) in eye-level images 0.08 0.01 0.23 0.03
3Deg The proportion of grass in eye-level images (pitch 0◦) 0.01 0.00 0.05 0.01
3Der The proportion of road in in eye-level images (pitch 0◦) 0.23 0.12 0.33 0.04
3Dew The proportion of sidewalk in eye-level images (pitch 0◦) 0.03 0.00 0.07 0.01
3Deb The proportion of building in eye-level images (pitch 0◦) 0.25 0.04 0.41 0.06
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the best model fitting.

2.3.2. HPM in OLS, GWR and RF
HPM is widely adopted in property valuation to quantify the hedonic 

value of different variables on property values (Rosen, 1974). The 
property value is an aggregation of a bundle of intrinsic and extrinsic 
hedonic characteristics, among which physical, locational and envi-
ronmental variables are commonly involved. The physical attributes 
refer to the internal structural characteristics of the property, such as 
plot size and the number of bedrooms. The locational attributes include 
characteristics such as the proximity to the nearest shopping mall and 

the density of hospitals. The environmental attributes refer to the vari-
ables such as the air quality level and the presence of greenery. The 
function of HPM can be written as follows: 

V = f(P, L,E3d)

Where f(...) indicates HPM, V stands for the property value, P for the 
physical variable, L for the locational variable, and E3d for the 3D var-
iable. In this study, the 3D variables replace the environmental variable 
in other studies, which can better describe the surrounding environment 
with a 3D perspective.

OLS, GWR, and RF are used to construct HPM. OLS is the baseline 

Fig. 2. Distribution of sampling points along the road network (a), the abstract simulations of eye-level angle (b) and sky-view angles (c), and illustrations of SVI in 
eye-level angle (d) and sky-view angle (e).
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model widely used in valuation studies (Qiu et al., 2022). It assumes a 
linear and global relationship between the dependent and independent 
variables but neglects spatial heterogeneity and spatial autocorrelation 
commonly found in geographic data (Wu et al., 2022). Moran’s I and 
variance inflation factor (VIF) are used to assess the spatial autocorre-
lation in the dataset and the multi-collinearity between independent 
variables. Moran’s I value ranges from − 1 to 1. A positive value close to 
1 indicates positive spatial autocorrelation, suggesting that similar 
values are clustered in space. GWR is an appropriate alternative to deal 
with the continuous spatial change and uneven distribution in property 
value data. It conducts a localised regression of variables to determine 
coefficients and identify spatial heterogeneity; therefore, GWR has been 

frequently adopted to explore the spatial non-stationarity between 
property values and the influencing variables (Qiu et al., 2022). The 
coefficient of determination (R2) is commonly used to show the pre-
dictable portion of the dependent variable, i.e., property values, in this 
study. It measures how well property values are replicated by the model 
(Hong et al., 2020). The value is between 0 and 1. If R2 = 0.5, it means 
50% of the variance of the property values is explained by independent 
variables, i.e., physical, locational and 3D variables, in our case.

RF is a machine learning algorithm applied for classification and 
regression tasks that work by using predictions derived from a combi-
nation of decision trees and using the average to improve prediction 
accuracy and avoid over-fitting issues (Breiman, 2001). It has no 

Fig. 3. The methodology design and the workflow of 3D hedonic price model (3D HPM).
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requirement on data distribution or type and is robust against noises and 
outliers (Wu et al., 2022). It is applicable and effective in valuation 
studies because it can handle categorical variables, such as the building 
type, and gives interpretations of the influences from different variables 
on property values (Antipov et al., 2012; Wu et al., 2022). Compara-
tively, many machine learning algorithms have black box issues – i.e., 
only giving the outcomes without explaining why. RF can generate 
explainable diagrams such as relative feature importance and partial 
dependence plots (PDPs). The relative feature importance table provides 
a measure of the contribution of each variable in the model to the overall 
prediction accuracy. The PDPs represent how one variable influences 
the model estimation. It can be interpreted similarly to the coefficients 
in linear or regression models while it is able to capture more complex 
patterns in an advanced model. The prediction performance can be 
measured by the root mean square error (RMSE), mean absolute error 
(MAE) and mean absolute percent error (MAPE). RMSE represents the 
square root of the average of the squared differences between predicted 
and actual values. MAE is the average of the absolute differences be-
tween predicted and actual values. MAPE is the average of the absolute 
percentage differences between predicted and actual values. We 
randomly split the dataset 80% as training and 20% as a test to calculate 
the R2, MAE, MAPE, and RMSE in RF.

3. Empirical results and analysis

3.1. The significance of 3D variables: evidence from model comparison

We built groups composed of different 3D variables to evaluate the 
contributions of eye-level and sky-view images separately. Group 1 does 
not include 3D variables. Groups 2 and 3 contain variables from eye- 
level (3Des, 3Der, 3Deg, 3Deb, 3Der, and 3Dew) and sky-view images 
(3Dss, 3Dst, and 3Dsb) separately. Group 4 include 3D variables from 
images in two angles. Table 2 gives an overview of R2 in different models 
and groups. In terms of variable selection, group 4 has the best R2 among 
all, so it serves as the basis for interpretations in the following sections. 
In OLS, we see a normal increase in R2 after adding 3Ds (0.273) from sky- 
view images, a higher increase after adding 3De (0.370) from eye-level 

images, and a remarkable increase after adding both (0.376). GWR 
and RF share the same tendency. In terms of model comparison, GWR 
performs better than OLS, with an increase of R2 from 0.376 to 0.636 in 
group 4. This means GWR can capture 63.6% of the influence of the 
variables, while OLS explains 37.6%. The improvement of R2 in GWR 
confirms the spatial heterogeneity and the clustered feature of property 
values. RF performs the best among all three models. R2 increases from 
0.716 to 0.768 by adding 3D variables. In addition to R2 values, RMSE, 
MAE, and MAPE are also used to evaluate the model accuracy, as shown 
in Table 3. The lowest RMSE in RF is 1669.60 yuan/m2. Taking the 
average property value (14,318 yuan/m2), the MAPE of estimation in RF 
is 11.66%. In summary, OLS has the basic performance, GWR has 
improvement, and RF has the best explainability and the least errors in 

Fig. 4. The example of semantic segmentation.

Table 2 
The R2 in different models and groups.

Group OLS GWR RF

(1) BASIC 0.267 0.580 0.716
(2) BASIC + 3De 0.370 0.622 0.763
(3) BASIC + 3Ds 0.273 0.598 0.735
(4) BASIC + 3Ds + e 0.376 0.636 0.768

Note: 3D, 3D variables (including eye-level and sky-view); BASIC, basic hedonic 
price model without 3D variables; GWR, Geographically Weighted Regression; 
OLS, Ordinary Least Squares; RF, Random Forest.

Table 3 
The comparison of R2, RMSE, MAE and MAPE among different models (based on 
group 4). The unit of RMSE and MAE: yuan/m.2.

Indicator OLS GWR RF

R2 0.376 0.636 0.768
RMSE 3116.65 2331.41 1669.60
MAE 2199.91 1582.27 1006.63
MAPE 0.16 0.11 0.08

Note, GWR, Geographically Weighted Regression; MAE, mean absoulte error; 
MAPE, mean absolute percent error; OLS, Ordinary Least Squares; RF, Random 
Forest; RMSE, root mean square error.
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different regards.
Moran’ I in this study is 0.78, which means a significant spatial 

autocorrelation, a common feature shared by property value data across 
different urban contexts (Dou et al., 2023). The multi-collinearity level 
can be accepted if the VIF value is less than 10 (Wu et al., 2022). We 
noticed that within 3D variables, only 3Deb and 3Des have strong linear 
correlation issues in group 4, with VIF values of 17.588 and 17.054, 
respectively. It means that the building and sky in eye-level images have 
a multi-collinear relationship, which is explainable because they are the 
main recognised semantic categories in one image and have offset effects 
on each other. The reasons that the two variables are kept in the models 
are as follows: 1) 3D is the main focus of this study; 2) we conducted the 
major part of the analysis based on RF, which tolerates the 
multi-collinearity among variables (Breiman, 2001).

3.2. Spatial effect of 3D variables: evidence from GWR

Table 4 lists the estimated coefficients of variables in GWR, including 
the mean, minimum (Min), median, and maximum (Max), in combina-
tion with the coefficients in OLS. The results of physical and locational 
variables on property values are consistent with existing valuation 
studies (Wen et al., 2014; Zheng et al., 2023), so we would focus the 
interpretations on 3D variables. Among the physical variables, REL_floor 
= 3 and TOTAL_floor have negative standardised coefficients of − 0.138 
and − 0.142 (p < 0.01), which reflect buyers’ preferences for low storey 
level and fewer storeys of a high-rise residential building.

All OLS coefficients and the GWR median have the same directions. 
Only 3Des is statistically insignificant; all the other variables are statis-
tically significant at 0.01 level. As mentioned before, it has a solid multi- 
collinear relationship with 3Deb. Instead, 3Deb can be used for explain-
ability. On the positive side, there are 3Deb, 3Det, 3Deg, 3Der, 3Dss, which 
are building, tree, grass, and road in the eye-level images, and sky in the 
sky-view images. Grass and tree (3Det, 3Deg) share the top two largest 
values of the coefficients (1.041 and 1.026). Building (3Deb) and road 

(3Der) follow as the third and fourth with coefficients of 0.595 and 
0.269, respectively. 3Dss has a positive coefficient of 0.231. The negative 
variables are 3Dew, 3Dsb, 3Dst, which are sidewalk in eye-level images, 
and building and tree in sky-view images. 3Dew holds the most signifi-
cant absolute coefficient value of − 1.102, reflecting the sidewalk’s 
considerable negative impact. The coefficients of 3Dsb and 3Dst are 
− 0.024 and − 0.068.

Fig. 5 gives an overview of 3Dss in GWR. The distribution of 3Dss has 
a trend of expansion from the centre towards the periphery (Fig. 5c and 
d). The city centre of Xi’an has narrow street width and densely 
distributed buildings. The north and west peripheries have improved 
urban design with broader roads and more sky exposure. The distribu-
tion of its coefficients has a similar tendency (Fig. 5a). In the centre, 3Dss 
has negative values. The fact shows that the presence of sky is not fav-
oured for higher property values. The negativity reduces and eventually 
becomes positive as it gets farther from the centre. Fig.5b shows the 
distribution of the p value of 3Dss, indicating the geographical coverage 
when 3Dss is statistical significant.

3.3. The contribution of 3D variables: evidence from RF

Fig. 6 displays the relative importance of all the variables. Among the 
3D variables, road, tree and grass from eye-level images (3Der, 3Det, 
3Deg) are the top three influential variables with values of 1, 0.619 and 
0.541. Sky from sky-view images (3Dss) ranks fourth (0.432) in the total 
and first in sky-view variables. Building from sky-view images (3Dsb) 
closely follows with a value of 0.411. The sequence of other 3D variables 
is as follows: 3Deb (0.369), 3Des (0.361), 3Dew (0.327), standing for 
building, sky, and sidewalk in eye-level images, separately. Tree in sky- 
view images (3Dst), has the least value (0.26) among 3D variables, but it 
is still ahead of several physical and locational variables.

Fig. 7 illustrates the PDPs of all 3D variables. 3Det, 3Deg, 3Der, 3Dss, 
and 3Dsb share a similar pattern. In the early stage, there is hardly an 
impact on property values; then, the influence becomes obvious after a 

Table 4 
The regression results of group 4 in GWR.

Variable HPM GWR (bandwidth = 6671.479)

Coefficients Standardised Coefficients Mean Min Max Median

Room number 1203.804*** 0.159*** 1143.0 323.3 1973.7 1194.0
REL_floor = 2 22.913 0.143 − 111.94 − 314.54 70.96 − 109.22
REL_floor = 3 − 316.676*** − 0.138***    
TOTAL_floor − 15.527*** − 0.142*** − 24.53 − 93.53 84.54 − 23.54
AREA_num − 13.160*** − 0.142*** − 18.91 − 57.59 8.05 − 18.25
ORI 359.452*** 0.147*** 161.27 − 564.11 1137.33 86.48
BUILT_y 180.628*** 0.145*** 277.7 − 211.94 277.74 207.21
DECO 1062.988*** 0.157*** 795.4 137.7 1678.9 784.83
ELEV = 1 1716.392*** 0.166*** 1522.70 − 25.04 4012.4 1441.14
DIST_cbd − 246.576*** − 0.139*** − 360.97 − 17,208.09 12,362.59 − 330.59
DIST_shop − 734.632*** − 0.132*** − 594.4 − 4308.1 3141.6 − 499.4
Dist_hos 220.003*** 0.146*** − 39.5 − 19,420.7 12,286.3 249.0
DIST_par − 114.664** − 0.141** 66.87 − 1977.37 20,495.49 20.86
DEN_con − 10.847*** − 0.142*** − 19.57 − 824.68 77.01 − 8.26
DEN_edu − 10.460*** − 0.142*** − 9.74 − 1614.89 369.82 − 12.69
DEN_sar 0.238 0.143 − 1.77 − 108.05 588.52 4.98
DEN_sub 2.086*** 0.143*** 1.92 − 147.93 129.90 − 0.58
DEN_bus − 55.331*** − 0.142*** 12.77 − 2324.95 212.06 8.98
DEN_sub 200.268*** 0.145*** 115.62 − 6493.17 3807.67 109.41
3Deb 32,824.630*** 0.595*** 21,547 − 85,055 167,169 20,984
3Des 447.816 0.149 19,417 − 279,849 738,261 1944
3Det 65,194.840*** 1.041*** 50,074 − 307,557 445,101 44,086
3Der 9200.529*** 0.269*** 13,047 − 158,162 87,571 12,753
3Deg 64,165.820*** 1.026*** 49,330 − 742,635 3,381,151 40,723
3Dew − 90,355.550*** − 1.102*** − 17,209 − 225,127 943,558 − 14,720
3Dsb − 12,112.580*** − 0.024*** − 210.5 − 272,292.5 209,371.4 − 2412.0
3Dss 6447.751*** 0.231*** − 182.1 − 340,716.1 109,583.2 1946.5
3Dst − 15,285.010*** − 0.068*** − 28,856 − 660,197 193,147 − 28,138
Constant − 364,088.400*** − 4.872*** − 382,278 − 551,634 41,221 − 417,452

Note: *p < 0.1; **p < 0.05; ***p < 0.01, REL_floor and ELEV are regarded as numerical variable in GWR.
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certain value. After reaching another value, the impact again becomes 
insignificant. Certain values vary among different variables. In eye-level 
images, tree (3Det) starts at 0.10 and ends at 0.15; grass (3Deg) starts at 
0.08 and ends at 0.22, road (3Der) starts at 0.23 and ends at 0.26. In sky- 
view images, sky (3Dss) starts at 0.30 and ends at 0.65, building (3Dsb) 
starts at 0.06 and ends at 0.12.

Building and sky in eye-level images share a pattern. They firstly 
have a positive contribution, but the positivity drops after a certain 
value and starts a negative impact. Building (3Deb) starts to drive up 
property values at 0.12 considerably, and after 0.18, the effect becomes 
negative until it reaches 0.3, and the curve gets stable. Sky (3Des) has a 
positive influence when the value ranges from 0.1 to 0.18, and the in-
fluence becomes insignificant after 0.24.

Sidewalk in eye-level images (3Dew) and tree in sky-view images 
(3Dst) have another pattern: it impacts negatively at the beginning, and 
after a certain value, it becomes a positive variable. 3Dew gradually 
declines from the start until 0.04, reaching its bottom and then regaining 
growth. This means that 3Dew first reduces the property value with its 
increase. After 0.04, it has a positive influence, and after 0.046, the 
influence becomes insignificant. Regarding 3Dst, the decrease tendency 
stops at 0.05. The impact becomes inapparent after 0.08.

Fig. 5. The distribution of 3Dss in GWR model: coefficient (a), p value (b), variable itself (c), and 3D visualisation (d).

Fig. 6. The relative importance of variables in Random Forest (RF) model.
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4. Discussions

4.1. 3D variables in eye-level images

In GWR, eye-level greenery (tree and grass) has the greatest positive 
influence on property values, which is consistent with the existing 
knowledge (Li et al., 2015; Zhang et al., 2018). Building (3Deb) ranks the 
third. More building presence in images may stand for a more central-
ised location, an important indicator always appreciated by buyers (Ying 
et al., 2022). There is conflict in the paved area: sidewalk (3Dew) has a 
negative influence, while road (3Der) has a positive influence. From a 
macroscopic urban perspective, this is evidenced by the current 
car-oriented urban transportation in China (Quan et al., 2020). People 
prefer a wide road as an indicator of good transportation access, while a 
wide sidewalk is not advantageous. Another local reason is the urban 
infrastructure. Renowned as an ancient capital, the downtown areas of 
Xi’an are characterised by old infrastructure – narrow sidewalks – while 
in the newly developed districts, which have comparatively lower 
property values and are remote from CBD, the quality and width of the 
roads and sidewalk are improved.

The presence of road (3Der) receives the most significant relative 
importance, which can be related to how SVIs are collected. SVIs are 
typically captured by custom-made cameras mounted on top of the ve-
hicles and, thus by nature, contain a large share of roads in the images 
(Li et al., 2015). The ranking of greenery (3Det, 2nd and 3Deg, 3rd) 
robustly proves its important role. The PDPs show that tree, grass, road 
(3Det, 3Deg and 3Der) are always positive variables. Building, sidewalk 
and sky (3Deb and 3Dew) show a mixed effect. This can be because 
property values increase when there are more built-up elements in the 
downtown areas, but the trend reverses in suburban areas.

PDPs visualise when variables start or stop to impact property values. 
These values set up important references for urban planners that the 
presence of specific objects has an optimal value range for price 

premiums. If it is not in the range, the variables may have an impact in 
opposite directions or barely have an impact. For example, the optimal 
range of the tree (3Det) is between 0.10 and 0.15. This means that if the 
presence of trees is under 10%, it hardly makes an impact; if the pres-
ence is over 15%, the impact becomes insignificant. Urban planners can 
optimise their planning strategy according to these values to avoid 
wasting resources and investment. This rule applies to both angles.

4.2. 3D variables in sky-view images

In the group comparison, the increase of R2 of the model with sky- 
view images is smaller than in eye-level images (0.019–0.047 in RF; 
see Table 2). Nevertheless, it does not make sky-view images less 
important than eye-level ones. The fact aligns with the inherent geo-
information richness. The eye-level images capture richer geo-
information about the streetscape, while the sky-view angle mainly 
documents sky, tree and building. In GWR, the distribution of 3Dss is 
uneven and spatially heterogeneous (Fig. 5c). One of the important 
findings is the mixed effect of 3Dss as its coefficients are negative in the 
centre but become positive as it grows out of the city. In practice, it 
means that in the downtown area, people pay more attention to the 2D 
locations while other influencing variables become insignificant, which 
is reversed in the suburban areas. It reminds policymakers to adopt fit- 
for-purpose land use policies in different city regions and highlights the 
need for adequate sunlight in vertical cities (Wu et al., 2024). The 
negativity imposed by 3Dsb and 3Dst are reasonable. More buildings and 
trees in sky-view images stand for less sky exposure and narrower street 
openness enjoyed by the residents. The street canyons with high-rise and 
closely-packed buildings will influence the urban micro-climate and 
residential quality (Chen et al., 2010), which deserves to be a primary 
concern for urban planning. It also aligns with the abovementioned 
negative effect of TOTAL_floor, that too many high-rise buildings in the 
viewshed may reduce the property value.

Fig. 7. The partial dependence plots (PDPs) of 3D variables.
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The ranking of 3Dss and 3Dsb (sky, 4th and building, 5th) in relative 
feature importance (Fig. 6) reveals the important role of sky-view angle. 
The ranking of building needs particular attention. With an average of 
10% presence in the image, the building reaches an importance 
approximately equal to the sky (average presence of 51%). Only build-
ings high enough can be captured in the sky-view angle, so the con-
struction of high-rise buildings should be carefully considered – as it 
impacts property values negatively. 3Dst does not receive high impor-
tance; the low presence of trees in the image (average 4%) can be 
accountable for that.

PDPs reveal that the sky and building are always positive, while the 
tree shows a mixed effect – first decrease, then increase. This means that 
only trees within a certain amount (between 0.08 and 0.15) can improve 
the values, while too few or too many do not exert positivity. It has a 
different direction from the 3Det, which is always positive. The differ-
ence between the same object at two angles means positive eye-level 
greenery can sometimes decrease the property value in the sky-view 
angle. It means the quality and the shape of trees, such as canopy 
structure, also deserve focus. The findings in Japan support our insights 
with similar logic that not only poor green views but also excessive green 
views have a negative impact on values (Yamagata et al., 2016). Simi-
larly, the building also has different impact directions from two angles. 
The mismatch of the influence directions of the same object indicates the 
effect of tree and building is non-linear, further proving the importance 
of studying the sky-view angle for landscape design optimisation.

4.3. Summary of findings

The overall significance of 3D is confirmed by the following facts: 1) 
the R2 increase in groups 2, 3 and 4 by adding 3D variables; 2) the 
statistical significance (p < 0.05) of 3Dss, 3Dst, 3Dsb from sky-view im-
ages; and 3) the average relative importance of 3D variables is 0.481, 
which outperforms the average value of physical and locational vari-
ables (0.323). In addition, we also found the influence of 3D in physical 
variables, with the negative coefficients of REL_floor and TOTAL_floor, 
the relative location of the property and the total floor numbers of a 
building. This means the residents do not favour either the relatively 
high-storey level or the absolute tall building height. The reasons could 
be the long commuting and waiting time between the property and the 
ground, the negative externalities from wind and traffic noise (Ying 
et al., 2021), safety concerns (e.g., vertical fire evacuation) (Ding et al., 
2021), and a better living experience brought by fewer residents in one 
building (Ying et al., 2022).

In HPM, RF shows better model performance than GWR and OLS. It 
also has strong explainability supported by relative feature importance 
and PDPs (Figs. 6 and 7). They are easy to understand and help re-
searchers explore how and when 3D variables influence property values. 
Explainability should not only refer to being more accessible to explain 
by the researchers who create the model but also being more under-
standable to users (Gevaert, 2022). Algorithms with higher explain-
ability and predictive accuracy with user-friendly visualisation are 
preferable in valuation because the homeowners can dispute their 
valuation or the property tax based on it (and even appeal to the courts). 
The taxation authorities then need to be able to give a proper explana-
tion of how the value is reached.

4.4. Limitations and ways forward

This study has the following limitations: first, the sky-view angle can 
only simulate but not fully restore the view from a high-storey level 
because SVIs are taken on the ground. SVIs do not represent the exact 
view from the windows of an apartment or the internal neighbourhood 
environment; they reflect the visible streetscape alongside the main 
roads to where vehicles have access. By its nature, the perspective of 
SVIs is opposed to the apartments themselves and from the standpoint of 
pedestrians, and it provides rich semantic information about the 

surrounding environment (Dai et al., 2024). City-scale photo datasets 
showing views from apartments are unavailable at present, and simu-
lating such views is computationally intensive and highly complex (Ito, 
Quintana, Han, Zimmermann, & Biljecki, 2024). These limitations 
restrict the scalability and transferability of studies in other urban 
contexts relying on views from the apartments. Our results further prove 
that SVIs can be a high-quality and cost-effective data alternative to 
provide 3D geoinformation when the large-scale 3D data of the study 
area is not available, which makes it a pragmatic tool for researchers and 
policymakers in rapidly urbanised cities globally. Second, we extracted 
semantic information from 2D-based SVIs in two different angles to 
simulate a 3D perspective due to the lack of city-scale 3D data; more 
specifically, the images in sky-view angle are used to simulate the ver-
tical angle. In this case, the 3D variables serve as the proxies of the actual 
3D built environment. Third, we also assumed there were no 
time-related influences on the property values in the half-year period, 
such as inflation or currency depreciation.

This study provides insights into future works aiming for recon-
structing 3D built environment. Building height information can be a 
promising 3D data type in the data aspect, as it is a key attribute for 
reflecting urban form, human activities, and human-environment in-
teractions (Wu et al., 2023; Yang et al., 2022). High-resolution drone 
image is also a promising complementary source to provide 
property-level data, which is still absent at a large scale (Tan et al., 
2021). The potential of SVIs can be extended from static semantics to 
dynamic information (e.g., noise, sunlight, and ventilation) to quantify 
the economic value of living comfort (Diener et al., 1997). Besides, 
combined with socioeconomic data, it is also meaningful to track if 
spatio-temporal changes in the 3D built environment can be linked to 
segregation of different socioeconomic groups or accessibility of specific 
ecosystem services (Csomós et al., 2024; Luo et al., 2024; Tang et al., 
2025). Regarding the technology, multi-modal deep learning models 
support diverse data input, which can be a promising research direction 
(e.g., combining text data with images). In traditional valuation, texts (e. 
g., the names and descriptions of properties and public facilities) are 
usually excluded from statistical models as they do not accommodate 
textual data. Therefore, the messages from texts remain yet unknown. 
Transformer is an exemplary case, a type of neural network architecture 
known for its attention mechanism. The multi-modal fusion of texts and 
images is proven valid for building semantic labelling, which facilitates 
a thorough understanding of the urban environment (Zhou et al., 2023). 
Differentiating what kind of building facades add or decrease environ-
mental aesthetics is an inspiring topic. The challenges would lie in the 
efficiency of model training with massive data while keeping AI 
explainability. It is also worth highlighting that we primarily focus on 
using machine learning, i.e., RF in this study, to provide explainability 
and interpretations on 3D variables. We keep the parameter setting in a 
default mode without extensive adjustments. In future works, hyper-
parameter tuning (e.g., number of trees, maximum depth, and feature 
selection strategies) could be explored further to improve the model 
performance in a computationally efficient way. To move a step beyond 
data and technology, the importance of 3D in property valuation calls 
for more formal recognition to foster equal land use policy and fair 
property taxation in vertically developed cities. For example, it is 
reasonable to raise the property tax for brighter and broader views. 
However, this aspect cannot be reflected in the current taxation criteria. 
The first step can be an extension to existing standards, such as the Land 
Administration Domain Model (LADM) (Unger et al., 2021), to provide 
structured documentation and rules for 3D valuation data as a founda-
tion for legalisation.

5. Conclusion

With the spatial changes happening in the vertical direction in cities 
because of the construction of high-rise buildings, it is necessary to 
conceptually and technically identify the hedonic value of 3D and add 
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3D variables in HPM for property valuation. Our empirical results show: 
1) 3D variables have made significant contributions to HPM, and the 
sky-view angle cannot be overlooked. 2) In the sky-view angle, sky is 
positively correlated while the presence of buildings and trees are 
negatively correlated with property values. The influence direction of 
building and tree are different in eye-level and sky-view images, which 
further reminds the importance of sky-view angle. 3) RF outperforms 
OLS and GWR regarding a higher model fitting and stronger explain-
ability power to interpret the influences of 3D variables. The study 
confirms the important role of 3D in HPM in the context of vertically 
developed cities with generous amounts of high-rise buildings. Our 
findings are expected to provide consultancy value for housing policy- 
making, such as fair property taxation and equal land use policy. In 
conclusion, this study provides solid evidences that SVIs and AI can 
quantify the 3D built environment at a low cost on a mass scale (tech-
nically feasible), and the sky-view angle is meaningful in valuation 
practices in vertical cities (practically significant), laying a foundation for 
future 3D property valuation.
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