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A B S T R A C T

Climate change and rapid urbanization have led to increasingly frequent urban flooding, causing substantial 
losses. While previous studies have examined the impact of land use types on flooding, few studies have explored 
how the spatial distribution and configuration of land use (landscape patterns) influence urban flooding across 
different scales. This study addresses this gap by investigating the effects of landscape patterns on urban flood 
events in Chengdu, China. We constructed a comprehensive dataset comprising 28 flood influencing factors, 
including landscape pattern, topographic, and hydrological characteristics. Using Principal Component Analysis 
(PCA), we classified these variables and applied stepwise Poisson regression to evaluate how landscape patterns 
affect urban flooding. Our findings show that key influencing factors vary by scales: at the 1 km scale, topo
graphic factors were most important; at the 2 km scale, impervious areas had the largest impact; and at the 3 km 
scale, landscape configuration factors were dominant. In particular, the mean patch area and cohesion were 
consistently significant across all scales, indicating that more fragmented and dispersed landscapes tend to 
reduce flooding occurrence. We conclude that scale is an important determinant for properly understanding the 
contribution of landscape patterns to urban flood mitigation.

1. Introduction

The frequency, intensity, and severity of hydro-meteorological 
events have significantly increased in recent decades due to global 
climate change, leading to an increase in extreme flooding events (Li 
et al., 2024; Nearing et al., 2024). By now, the number of people affected 
by floods is nearly equivalent to that of all other natural disasters 
combined (Ali et al., 2022; Birkholz et al., 2014). One reason is that 
rapid urbanization has led to the expansion of impervious surfaces, 
disrupting the natural surface water cycle and further exacerbating the 
urban flood risk (Wang et al., 2023b). As evidenced by the historic 
rainfall of 624.1 mm (Li et al., 2023b) on July 20, 2021, in Zhengzhou 
city, the consequences of the flooding were catastrophic, including the 
loss of 398 lives and economic damages totaling RMB 65.5 billion 
(Zheng et al., 2022). Consequently, addressing urban flooding has 
emerged as a critical issue for advancing resilient community con
struction in China.

Urban flooding occurs in urban areas where heavy or continuous 

rainfall leads to serious waterlogging on roads and low-lying areas due 
to inadequate drainage and infiltration capacity (Zhang et al., 2021). 
Although underground drainage pipe networks can mitigate urban 
flooding to some extent (Li et al., 2024), improvement of the drainage 
system infrastructure is expensive (Chen et al., 2021; Davis & Naumann, 
2017). From the perspective of urban planning, investigating the impact 
of different surface environments on urban flooding and developing 
disaster prevention strategies, are highly significant for reducing eco
nomic losses and improving the safety of residents’ lives and property 
(Zimmermann et al., 2016).

Climate change and rapid urbanization have profoundly altered 
hydrological cycles in cities (Sun et al., 2023; Zhang et al., 2022), 
leading to increased rainfall intensity, reduced infiltration, and accel
erated runoff production (Ma et al., 2024). Urban expansion often re
places natural land covers with impervious surfaces (Pan et al., 2023), 
amplifying surface runoff and reducing water retention capacity (Ma 
et al., 2022). Previous research has highlighted the impact of impervious 
surfaces on urban flooding (Wang et al., 2022). Those areas play a 
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critical role in influencing flooding by affecting water flow, flood 
propagation, flow volume, and peak flow (Sohn et al., 2020). Recent 
studies emphasized that the impact of floods is also influenced by the 
overall characteristics of the landscape (Zhang et al., 2020). Two land
scape ecological concepts have been used so far (Karimi et al., 2021): 
landscape composition as the proportions of different land use types 
within a specific landscape unit; and landscape configuration described 
as the spatial arrangement of landscape units (Osborne & Alvares- 
Sanches, 2019). While the influence of landscape composition on 
flooding is well-studied, there has been limited research on the impact of 
landscape configuration (Wang et al., 2023a).

Most studies have focused on single-scale (Li and Bortolot, 2022) or 
single-factor (Sohn et al., 2020) analyses, overlooking their complex 
interactions and scale effects. In heterogeneous urbanized areas, 
multi-scale analysis is essential (Saura & Castro, 2007). The concept of 
scale effect originates from landscape ecology. It indicates that land
scape elements exhibit varying characteristics at different spatial scales. 
Understanding the landscape structure in the context of spatial hetero
geneity also requires multiscale information (Rahimi et al., 2021). The 
scale effect is an important factor that relates to the complexity of 
landscape phenomena (Šímová and Gdulová, 2012). A single-scale 
analysis can provide partial information about landscape characteris
tics, while considering multiple scales can reveal the complex relation
ship between urban flooding and regulating factors. Considering the 
scale effect can also help us to better understand how environmental 
factors affect urban flooding.

This study aims to develop a novel multiscale and multifactor 
framework to analyze the complex mechanisms driving urban flooding. 
We focused on the urbanized central Chengdu area, known for its sus
ceptibility to flooding (Li et al., 2023a). We employed a stepwise Poisson 
regression model to quantify the complex relations between urban 
flooding and influencing factors at different spatial scales. Our research 
is driven by a set of research questions that aim to shed light on the 
causes of urban flooding: (1) How do changes in scales affect the vari
ation of influencing factors? (2) How do landscape pattern factors in
fluence urban flooding across different scales? (3) What dominant 
factors cause flooding to occur and at what scale? In this way, a better 
understanding will be obtained of how urban flooding interacts with the 
features of our cityscapes, thereby developing effective urban planning 
strategies to mitigate flood risks.

2. Materials and methodology

2.1. Study area and research framework

Chengdu is the capital city of Sichuan Province (Fig. 1b) and the 
largest city in southwestern China (Fig. 1a), covering an area of 3,640 
km2. Its resident population according to the seventh national census in 
2021 reported a permanent population close to 21 million. Chengdu has 
a subtropical monsoon climate with abundant rainfall in summer. With 
its rapid urbanization and city expansion, Chengdu is facing increasingly 
serious urban flooding issues during the summer. Considering the high 
risk of urban flooding events in this region, it is representative to identify 
the influencing factors of urban flooding. Our focus is on the municipal 
districts that were affected by recurrent flood disasters, as shown in 
Fig. 1c.

This study utilized terrain data, remote sensing imagery, and land 
use data to construct a database of surface influence factors. A Digital 
Elevation Model (DEM) was obtained from ASTER GDEM V2 at a 30 m 
resolution from the Geospatial Data Cloud platform (https://www. 
gscloud.cn). Sentinel-2 images were acquired and processed through 
the Google Earth Engine Platform (https://earthengine.google.com). 
Land use data were obtained from the global land use/land cover (LULC) 
dataset developed by Gong et al., (2020), which derived from Sentinel-2 
images (10 m resolution) and generated annually using a deep learning 
classification model trained on billions of manually labeled image 
pixels. Administrative division data in Shapefile format were provided 
by the Chengdu Civil Affairs Bureau. All datasets were clipped according 
to administrative division boundaries to ensure consistent processing 
areas. Flooding data originated from the Weibo platform and were 
validated as reported previously (Li et al., 2023). A summary of the 
datasets is provided in Table 1.

To provide a clear overview of the analytical process, Fig. 2 presents 
the research workflow. After collecting the datasets including flood in
ventory and fundamental datasets, we determined the analysis scales. 
Then, influencing factors were classified into four categories: landscape 
composition, landscape configuration, topographic, and hydrological 
factors. We applied Principal Component Analysis (PCA) to reduce 
dimensionality and stepwise Poisson regression to identify key flood- 
driving factors. Finally, scale-specific flood management strategies 
were developed based on the analysis results.

Fig. 1. Study area: (a) Sichuan province located at the southwestern China; (b) Chendu city situated in the central part of Sichuan province; and (c) the municipal 
districts of Chengdu city.

Y. Li et al.                                                                                                                                                                                                                                        Ecological Indicators 176 (2025) 113614 

2 

https://www.gscloud.cn/
https://www.gscloud.cn/
https://earthengine.google.com


2.2. Determination of analysis scales

The selection of analysis scales was based on both national urban 
planning standards and data limitations. According to the Construction 
and Application Regulations for Urban Flood Control System formulated 
by the China Association for Engineering Construction Standardization, 
the minimum planning unit is 1 km2. Therefore, we adopted 1 km as the 
minimum scale (Fig. 3a). Considering the limited sample size of urban 
flooding events, the maximum analysis scale was set at 3 km. Conse
quently, we defined three analysis scales: 1 km (S1), 2 km (S2), and 3 km 
(S3). These scales therefore correspond to different levels of urban 
spatial organization: the 1 km scale to localized drainage patterns and 
micro-topographic variations; the 2 km scale to neighborhood-level 
urban structures; and the 3 km scale to broader landscape patterns 
that influence surface water accumulation and flooding.

Table 1 
Datasets used in this study.

Data and format Spatial 
resolution

Time Source

Flood records 
(Shapefile)

Point July 
2018

Social Media data from 
Weibo

Topographic data 
(Raster)

30 m − ASTER GDEM V2

Administrative 
boundaries 
(Shapefile)

Polygon 2018 Chengdu Civil Affairs 
Bureau

Sentinel 2 images 
(Raster)

10 m 2018 Google Earth Engine 
Platform

River (Shapefile) Polygon 2018 National Catalogue service 
For Geographic Information

Fig. 2. Research framework.

Fig. 3. Analysis scales.
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2.3. Urban surface influencing factors

Landscape characteristics refer to the spatial arrangement of land 
cover within a landscape. It encompasses landscape composition, 
defined as the quantity of each land cover or land use type, and land
scape configuration, defined as the spatial patterns and connectivity of 
these types (Karimi et al., 2021). In landscape ecology, a variety of 
metrics can be used to quantify landscape configuration at the patch, 
class, and landscape levels. As shown in Fig. 4, a patch is the smallest 
landscape unit, while a class refers to the overall characteristics of a 
specific land cover type. The focus of our study is on the landscape level, 
which refers to the spatial patterns and processes of an entire landscape, 
including patches and classes.

We collected 28 influencing factors and categorized them into four 
groups: 9 landscape composition factors, 12 landscape configuration 
factors, 6 topographic factors, and 1 other factor. The definitions, ex
pressions, and ecological description of each flood influencing factor are 
detailed in Table 2.

(1) Landscape composition factors quantify the variety and abun
dance of land cover types within a landscape. These factors influence 
water infiltration and runoff processes, thereby affecting the extent of 
urban flooding. To characterize landscape composition, we use Patch 
Richness (PR) and the percentage of the landscape type (Pi).

(2) Landscape configuration factors assess the spatial arrangement, 
shape, and pattern of the land cover patches. They play a critical role in 
water exchange and circulation which impacts the severity of urban 
flooding. For example, the Largest Patch Index (LPI) reflects the domi
nance of a single patch, with higher values indicating lower fragmen
tation (Zou et al., 2022); Total Edge (TE) measures the degree of edge 
complexity, affecting how water flows across patch boundaries (Kuo 
et al., 2021); the Aggregation Index (AI) quantifies spatial continuity 
and physical connectedness of patches, which influence surface runoff 
and infiltration potential (Yin et al., 2025); and Shannon’s Diversity 
Index (SHDI) captures landscape diversity and heterogeneity, being 
closely linked to water retention capacity and flow redistribution (Li 
et al., 2021). By interpreting these metrics, we gain ecological insight 
into how landscape structure regulates hydrological responses such as 
runoff generation and flood propagation. For this study, we selected 11 
key factors, including 2 edge factors: TE and Edge Density (ED); two 
patch size factors: LPI and Mean Patch Area (AREAm); four contagion/ 
interspersion factors: AI, Contagion (CONTAG), Landscape Shape Index 
(LSI), and Patch Cohesion Index (COHESION); two subdivision factors: 
Patch Density (PD) and Landscape Division Index (DIVISION); and one 
diversity factor: SHDI. We employed the Fragstats 4.2 software (https: 

//www.fragstats.org) to obtain the landscape configuration metrics. A 
moving window method was used, with window sizes according to the 
defined scales set at 1 km, 2 km, and 3 km, respectively. This allowed us 
to make localized assessments of landscape patterns for each analysis 
unit. All landscape metrics were computed at the landscape level, 
ensuring that the resulting indices accurately captured the spatial 
composition and configuration that are relevant to urban flood analysis.

(3) Topographical variables can influence the distribution and flow 
paths of surface runoff within a city. Elevation affects the direction of 
water flow; slope impacts the speed of water flow; and curvature in
fluences the convergence and dispersion of water. Here, we selected six 
key topographic factors, including the mean and range values of 
elevation, slope, and curvature within each landscape unit. The mean 
values provide an overview of the overall terrain characteristics, while 
the range values indicate the extent of variability within the landscape 
unit.

(4) Hydrological factor: Distance to the river (DisRIVERm) was 
included, as proximity to rivers can significantly influence flood risk. We 
obtained the average distance from each analysis unit to the nearest 
river using Euclidean distance analysis in ArcGIS (Zhang et al., 2016).

2.4. Statistical analysis

2.4.1. Principal component analysis
We employed a Principal Component Analysis (PCA) (Abdi & Wil

liams, 2010) to reduce data dimensionality and extract key features. 
PCA transforms the original variables into uncorrelated principal com
ponents (PCs), effectively mitigating multicollinearity and focusing on 
the most significant data features (Dai et al., 2023). First, we stan
dardized the influencing factors as PCA is sensitive to variable magni
tudes. Next, we calculated the covariance matrix to assess the linear 
relationships between variables. The eigenvalues of the covariance 
matrix, representing the variance explained by each principal compo
nent (PC), were plotted in a scree plot, and the elbow method was used 
to determine the optimal number of components to retain (Schreiber, 
2021). The data were then transformed into the new feature space 
defined by the PCs, effectively reducing dimensionality while preserving 
most of the variance. Finally, we checked the proportion of variance 
explained by the retained components to ensure that the reduced feature 
set captured most of the original data’s variability.

We interpreted the PCs by examining their factor loadings. Variables 
with absolute loadings > 0.55 were considered significant and retained 
for further analysis. Loadings indicate the contributions of a variable to a 
specific PC, with higher values signifying a stronger influence. The sign 

Fig. 4. A conceptual diagram that illustrates the relationship between patch, class, and landscape.
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of a loading reflects the direction of the relationship: a positive loading 
indicates a direct association with the PC, whereas a negative loading 
indicates an inverse association.

2.4.2. Stepwise Poisson regression model
We used a stepwise Poisson regression model to capture the rela

tionship between flooding occurrences and the influencing factors from 
PCA (Neri et al., 2020). A stepwise procedure allowed us to select those 
components that have the most influence on the response variable. Here, 
the count of flood events serves as the response variable, while the 
influencing factors described in section 2.3 act as predictor variables. 
We adopted a forward selection procedure, starting with an empty 
model that only included the intercept. Variables were added step by 
step, until no further improvement in model fit was achieved. During 
this process, the procedure also checked whether the inclusion of a new 
variable rendered any previously added variables redundant, in which 
case those variables were removed. Through this iterative approach, 
variables were added or removed to optimize the model’s goodness of 
fit. Our model assumes that the number of flood occurrences per cell is a 
realization from the Poisson distribution whose intensity λi is expressed 
as: 

log(λi) = log(‖αi‖) + β0 +
∑K

k=1
βkxik# (1) 

where λ is the expected number of the flooding reporting points at each 
observation cell, β0 is the intercept, βk is the coefficients for the influ
encing factor xk, K is the number of selected variables, log(‖αi‖) is an 
offset term to adjust for scale effect, where ‖αi‖ represents the area of the 
cell. By incorporating this log(‖αi‖), we adjust for the fact that larger 
areas are more likely to have more flooding events simply due to their 
size. This ensures that the model accounts for scale differences between 
observation units, focusing on the true relationship between the influ
encing factors and flooding occurrence.

3. Results

3.1. Determining the number of principal components

The scree plots with parallel analyses at scale levels S1, S2, and S3 
(Fig. 5) indicate that the first PC shows a notably high eigenvalue—7.28 
for S1, 7.72 for S2, and 7.3 for S3—followed by a sharp decline. This 
suggests that the first PC alone accounts for approximately 30 % of the 
total variance across the three scales. The first eight PCs have eigen
values greater than 1, signifying that they capture the most significant 
variance in influencing factors and are, therefore, considered important 
for retention. considered significant and worth retaining. Notably, the 
cumulative explained variance of the first eight PCs are larger than 80 %, 
suggesting that they can effectively summarize the influencing factors.

3.2. Exploring analysis at S1

3.2.1. Principal components at S1
The Sankey diagram in Fig. 6 illustrates the contributions of various 

influencing factors to the PCs at the 1 km planning scale. Each factor’s 
contribution to a PC is represented by the value in parentheses, which 
indicates the loading of that factor on the respective PC.

PC1 is entirely composed of landscape configuration factors, while 
PC2 is mainly influenced by topographic factors. This indicates that, at 
the 1 km scale, landscape configuration factors are the primary variables 
to consider, followed by topographic factors. PC1 shows high positive 
loadings for ED, LSI, TE, SHDI, and DIVISION, indicating a strong pos
itive correlation among these factors. These five factors primarily 

Table 2 
Summary and description of flood influencing factor used in the study.

Variable Formula Description (Unit)

Landscape composition factors
Pi

Pi =

∑ni
j=1aij

A
Percentage of land cover i (Pi)

within an analysis unit.
PR PR = ni Patch Richness (PR), the number of 

different patch types within an 
analysis unit.

Landscape configuration factors
LPI

LPI =
max

(
aij
)

A
(100)

The Largest Patch Index (LPI), 
representing the percentage of the 
landscape unit occupied by the 
largest patch.

TE TE =
∑m

i=1

∑ni

j=1
eij Total Edge (TE), which is the sum of 

the lengths of all edge segments.
ED ED = TE/A Edge Density (ED), defined as the 

total edge in the landscape unit 
divided by the total landscape area.

AREAm
AREAm =

∑m
i=1
∑ni

j=1aij

N
Mean Patch Area (AREAm), the 
average area of the corresponding 
patches within an analysis unit

SHAPEm SHAPEm =
0.25Pi

n ̅̅̅̅ai
√

Average shape index of the 
corresponding patches within an 
analysis unit.

LSI LSI =
0.25TE

̅̅̅̅
A

√
Landscape Shape Index (LSI), 
reflecting changes in patch shape 
within an analysis unit.

PD PD =
N
A

Patch Density (PD), expressing the 
number of patches per unit area.

SHDI SHDI = −
∑m

i=1
(Pi • lnPi) Shannon’s Diversity Index, 

reflecting landscape diversity, 
complexity, and heterogeneity.

DIVISION DIVISION =

1 −
∑m

i=1

∑ni

j=1
(
aij

A
)
2

Division Index (DIVISION), 
indicating the probability that two 
randomly chosen pixels are not 
situated in the same patch.

AI
AI =

[
∑m

i=1

(
gii

max
(
gii
)

)

Pi

]

×

100

Aggregation Index (AI), quantifying 
the aggregation degree of patches 
within an analysis unit.

CONTAG

CONTAG =

⎡

⎢
⎢
⎣1+

∑m
i=1
∑m

k=1

[

Pi

(
gik

∑m
k=1gik

)][

ln(Pi)

(
gik

∑m
k=1gik

)]

2ln(m)

⎤

⎥
⎥
⎦×

100
Contagion Index (CONTAG), measuring the extent to which landscape 
elements are aggregated or dispersed.

COHESION
COHESION = (100)×

[

1 −

∑n
j=1pij

∑n
j=1pij

̅̅̅̅̅aij
√

]

×

[

1 −
1̅
̅̅
Z

√

]− 1
Cohesion 

Index (COHESION), indicating the physical connectedness of the 
corresponding patch type.

Topographic factors
Em − Mean elevation value within an 

analysis unit.
Er Er = Emax − Emin Elevation range within an analysis 

unit.
Sm − Mean slope value within an analysis 

unit.
Sr Sr = Smax − Smin Slope range within an analysis unit.
Cm − Mean curvature value within an 

analysis unit.
Cr Cr = Cmax − Cmin Curvature range within an analysis 

unit.
Hydrological factor
DisRIVERm − Average distance to the river 

network

N = the total number of patches, A = total landscape area, m= 8 means the total 
number of patch types, i indicates the ith patch type (i ≤ m), ni = the total 
number of the ith patch type, j represent the jth patch in ith patch type, aij =

area of patch ij, Pi = the proportion of the landscape occupied by patch type i, 
ei = the length of edge involving patch type i, gik = the total number of times that 
patch type i adjacent to type k, gii = the number of like adjacencies (joins) be
tween pixels of patch type i based on the single-count method, max

(
gii
)
= the 

maximum number of like adjacencies (joins) between pixels of patch type i based 

on the single-count method and Pi = proportion of the landscape comprised of 
patch type i.
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represent landscape diversity. In contrast, AREAm and LPI have high 
negative loadings, reflecting aggregation patterns. Together they 
explain a large portion of the variance in the data related to landscape 
configuration. PC3 is largely explained by COHESION (0.96). PC4 cap
tures the variance explained by the landscape composition. PC5 mainly 
reflects the influence of topographic factors, especially DEMm (0.81). 
PC6-8 shows the influence of different types of landscape composition.

3.2.2. Poisson regression analysis at S1
Fig. 7 shows the estimated coefficients for each PC with their 95 % 

confidence intervals. An increase in PC1 (Landscape edge & shape) and 
PC2 (Slope & Curvature) is associated with an increase in flood occur
rences. While PC3 (landscape contagion) and PC4 (landscape composi
tion) are negatively related with flood events. The coefficient for PC5 
(Elevation factors) is approximately − 1.1, the largest in absolute value, 
suggesting that the DEM-dominated PC5 has the greatest influence on 
flood events, with lower elevations leading to more flood occurrences. 
The confidence interval for PC7 includes zero, indicating that it is not 

statistically significant. PC7 is composed of wetland and shrubland, 
suggesting that these landscape compositions have a minimal impact on 
flooding.

3.3. Exploring analysis at S2

3.3.1. Principal components at S2
The PCA results for S2 are depicted in Fig. 8, indicate that at the 2 km 

planning scale, landscape configuration factors are the primary con
tributors to data variance, as they dominate both PC1 and PC2. In 
contrast, PC3 and PC4 are more influenced by topographic and land
scape composition factors. This suggests that landscape configuration 
factors explain the majority of variance at this scale, making them the 
most critical variables to consider, followed by topographic and then 
landscape composition factors. Specifically, PC1 is strongly associated 
with factors such as DIVISION (0.87), SHDI (0.8), LPI (− 0.87), and 
CONTAG (− 0.71), highlighting their significant role in data variability. 
PC2 shows high positive loadings for LSI, TE, and ED, suggesting a 

Fig. 5. Scree plot at the three scale levels. The horizontal axis represents the principal component numbers and the vertical axis the eigenvalues.

Fig. 6. Factor loadings of flood influencing factors on PCs at S1, with standardized loading values shown in parentheses.
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positive correlation among these factors, which contribute to a similar 
variance pattern. Conversely, AI and AREAm are inversely correlated 
with PC2. Additionally, PC5 is primarily driven by COHESION, PC6 is 
associated with curvature, and PC 7 and PC8 reflect landscape compo
sition, particularly wetlands and bare land.

3.3.2. Poisson regression analysis at S2
The Poisson regression coefficients for S2 was shown in Fig. 9. PC1 

(landscape division) and PC3 (slope) display negative correlations with 
urban floods, indicating that greater landscape division and steeper 
slopes potentially mitigate flood risks at S2. In contrast, the positive 
coefficient of PC2 highlights that larger patches in landscape units 
contribute positively to the occurrence of urban floods. PC4, repre
senting landscape composition factors with a focus on impervious areas, 
shows the strongest positive coefficient (approximately 0.88). This 
suggests that higher percentages of impervious areas significantly in
crease the frequency of flooding events. Moreover, PC5-7 also has a 
positive coefficient for flooding events, which indicating the landscape 
connection factors and curvature may increase the flood risk. PC8, 
which consists of bareland and shrubland, is not statistically significant, 
indicating that these two landscape compositions have rarely influence 
on flooding.

3.4. Exploring analysis at S3

3.4.1. Principal components at S3
Fig. 10 shows the PCA results at 3-km planning scale. PC1 is 

composed of topographic factors, while PC2 consists of landscape 
configuration factors. This suggests that, at the S3 scale, topographic 
factors account for the most data variance, followed by landscape 
configuration factors. In PC1, the positive loadings for slope and cur
vature suggest that as these factors increase, the score for PC1 also rises. 
In PC2, LPI (− 0.95) and DIVISION (0.94) have the highest loadings, 
indicating that PC2 captures the landscape’s division and fragmentation. 
PC3 consists of PD and AI, with PD representing the patch density of the 
landscape. PC4-7 are composed from various sources of influencing 
factors. Based on the factor loadings, PC4 is dominated by landscape 
composition, PC5 by DEM, PC6 by landscape shape, and PC7 and PC8 

Fig. 7. Poisson regression model coefficients with 95% confidence intervals 
at S1.

Fig. 8. Factor loadings of flood influencing factors on PCs at S2, with standardized loading values shown in parentheses.
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are primarily influenced by water and bareland, respectively.

3.4.2. Poisson regression analysis at S3
The negative coefficients for PC1, PC2, PC3, and PC5 imply the in

crease of these factors will contribute to a decrease in flood occurrences 
at this scale (Fig. 11). Among these, PC2 (landscape configuration fac
tors) has the highest absolute value (0.41) of coefficients, meaning more 

diversity and division of the landscape will decrease the flood occur
rences. PC5 could reflect the landscape composition factors, with in
creases in impervious area being significantly associated with higher 
flood risk. PC8, which consists of bare land, is not statistically signifi
cant, indicating it exert little influence on flooding.

3.5. Stepwise Poisson regression analysis on the original factors

Table 3 presents the coefficient estimates (with standard errors) from 
stepwise Poisson regression models. Variables with p-value ≤ 0.05 are 
considered significant for the regression model. Several influencing 
factors were found to significantly influence urban flood events across 
all three spatial scales (S1, S2, and S3).

For landscape configuration factors, AREAm and COHESION are 
significant at all three scales. Specifically, AREAm is significantly 
negatively correlated with flood events at all three scales, indicating that 
more dispersed patches are associated with fewer flood events. In 
contrast, COHESION shows a significant positive correlation with 
flooding at all three scales. In model S1, an increase of one unit in the 
COHESION index is associated with an expected increase of approxi
mately 2.07 flooding events, holding all other variables constant.

For terrain factors, SLOPEr and CURVr are significant in all three 
regression models. SLOPEr exhibits mixed effects across different scales: 
in S1 and S3, the coefficients are positive, suggesting that steeper slopes 
increase flood risk, whereas in S2, the coefficient is negative, implying 
that relative slope decreases flood risk. Similarly, CURVr also shows 
varying effects across scales. The negative coefficients in S1 and S3 
suggest that areas with higher curvature are less prone to flooding.

DisRIVERm is significantly negatively correlated with flooding at all 
three scales, indicating that areas closer to rivers are more prone to 
flooding.

Fig. 9. Poisson regression model coefficients with 95% confidence intervals 
at S2.

Fig. 10. Factor loadings of flood influencing factors on PCs at S3, with standardized loading values shown in parentheses.
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4. Discussion

4.1. The influence of landscape patterns on urban flooding

Currently, several studies have been carried out on the effect of 
landscape on water flows. For example, Liu et al. (2020) investigated the 
relationship between the landscape pattern and hydrological flows, but 
the effect of landscape on urban flood events still remains unclear 
(Diakakis et al., 2017). Our study found landscape configuration had a 
more significant impact to flood events than landscape composition, 
which has similar patterns to Liu et al. (2020)’s conclusion: in sub
tropical catchments, landscape pattern has more effect on hydrological 
flows than landscape composition. The regression results showed that 
the division landscape group always show negative influence on urban 

flood events. We have noticed that the PCA results categorized the 
landscape configuration as three groups: division & complexity, 
connection & aggregation, and shape & size. These results confirm the 
existing evidence in Nowosad and Stepinski (2018) who showed that 
two type of variables – complexity and aggregation can explain 70 % of 
the variability of geometric landscape configurations globally.

Specific landscape configuration factors: COHESION and AREAm 
were significantly correlated with flooding across all scales. The positive 
regression coefficient for COHESION indicates that higher COHESION 
values—representing more connected and continuous landscape 
patches—can increase flooding risk. This is consistent with Zhang et al. 
(2020)’s findings, which showed that the aggregation of impervious 
surfaces amplifies urban flooding events. In contrast, AREAm was 
negatively correlated with flooding. Larger patch areas often have a 
dominant patch, reflect more natural surfaces with more green space, 
thereby reducing flood risk (Peng et al., 2019).

4.2. Scale effects

Our findings exhibit strong scale effects, and we recommend that 
each scale should be given specific focus depending on the stage of 
planning or the scale of analysis. Previous research (Zhang et al., 2020b) 
has also demonstrated that the explanatory power of a given factor can 
vary across different scales, sometimes even reversing the direction of 
correlation. Although this can lead to contradictory or challenging in
terpretations of results, it also underscores the necessity of multi-scale 
studies. Especially in the field of planning and management, different 
scales can reveal varying levels of information, as highlighted by Liu 
et al. (2020).

Our study suggests that when considering scale effects, attention 
should be paid to three key aspects: (1) The diversity of landscape 
patterns: at larger scales, the diversity of landscape composition in
creases, encompassing various land uses and covers, such as urban 
buildings, green spaces, and water bodies. This diversity has a more 
pronounced impact on hydrological responses, as different landscape 
types influence interception, infiltration, and runoff differently. In 
smaller-scale areas, landscape types may be more uniform, and their 
impact may be relatively minor. (2) Statistical aspects: in statistical 
analysis, the sample size and range of variability significantly affect the 

Fig. 11. Poisson regression model coefficients with 95% confidence intervals 
at S3.

Table 3 
Stepwise Poisson regression results for influencing factors at different scales.

Coefficient Estimate (std error)
Factors S1 model S2 model S3 model

​ (Intercept) − 3.034***(0.146) − 4.342***(1.094) − 5.516***(1.094)
Landscape configuration PD − 1.655***(0.243) − 1.238***(0.364) ​

TE 4.633*(2.219) − 10.186(6.397) − 18.486***(7.589)
LPI ​ − 0.413***(0.124) ​
ED ​ − 12.044.(6.829) − 20.269*(8.173)
LSI − 3.87.(2.189) 21.863.(12.89) 38.055*(15.168)
AREAm − 1.18***(0.155) − 1.03***(0.149) − 0.242*(0.058)
SHAPEm − 0.68***(0.155) ​ ​
CONTAG − 0.535***(0.122) ​ 2.261***(0.652)
COHESION 2.071**(0.711) 1.558***(0.403) 0.899**(0.274)
DIVISION 0.186(0.118) ​ ​
PR 0.18*(0.084) ​ − 0.674***(0.199)
SHDI − 0.851***(0.142) − 0.151.(0.083) 1.962***(0.526)

Topographic factors DEMm − 0.42***(0.115) ​ ​
DEMr 0.96***(0.151) ​ − 0.668***(0.143)
SLOPEm − 13.763**(5.207) − 8.327*(2.652) ​
SLOPEr 13.331**(5.117) − 5.516***(1.094) − 0.364***(0.089)
CURVm 0.88***(0.148) NA ​
CURVr − 1.044***(0.192) − 0.134***(0.024) − 0.207***(0.061)

Hydrological factors DisRIVERm − 0.24***(0.038) − 0.194***(0.038) − 0.278***(0.038)
Landscape composition VEGETATION ​ ​ 20.87***(5.788)

WATER ​ 0.216***(0.032) 2.064***(0.558)
IMPERVIOUS ​ 1.137***(0.05) 22.001***(5.797)

Note: Signif. codes: ***(p < 0.001), ** (p < 0.01), *(p < 0.05),. (p < 0.1), (p > 0.1); NA: Variables not selected. Highlighted factors significantly influencing urban 
flood events across all three spatial scales.
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significance of results. Larger-scale areas provide more data points and a 
broader range of variability, potentially enhancing the statistical 
model’s ability to detect significant relationships. When the study area 
and sample size are fixed, however, using overly large study units may 
result in an insufficient number of samples, while using overly small 
units could lead to each unit containing too few data points. This 
imbalance can make it challenging to demonstrate statistically signifi
cant relationships. (3) Efficiency and Computational Power: as scale 
increases in resolution, the processing power and computation time 
required also increase. Finer scales demand more computational re
sources and time, as noted by (Fewtrell et al., 2008).

4.3. Implications for urban flooding reduction

By means of a PCA and a stepwise Poisson regression analysis of 28 
influencing factors, we identified several key indicators that can be used 
to reduce urban flooding.

From a landscape perspective, a more dispersed spatial pattern and 
greater diversity in landscape compositions consistently reduce the 
occurrence of flooding across all scales. Additionally, decreasing the 
proportion of impervious surfaces is an effective strategy. Therefore, we 
recommend that urban planning prioritize maintaining a sufficient 
proportion of green spaces and ensure that impervious areas are more 
spatially dispersed distributed.

From the topographic perspective, several factors show different 
effect on flooding events. At smaller scales (1 km), areas with higher 
slopes are more effective in mitigating flood events. Therefore, we 
suggested constructing sunken catchment areas could be beneficial at 
this scale. In contrast, at larger scales, maintaining relatively flat terrain 
is advisable; however, low-lying areas tend to be more prone to water 
accumulation. This aligns with previous studies (Zhang et al., 2020a), 
which suggest that in low-lying areas, the elevation of sunken green 
spaces or roadbeds should be 5–30 cm lower than the surrounding 
surface to increase slope and reduce flooding risk.

From the hydrological perspective, areas near rivers are more sus
ceptible to flooding. This increased risk is likely because many drainage 
systems are connected to rivers, and during the rainy season, rising river 
levels can impede drainage, leading to potential backflow and even 
overflow of riverbanks. Therefore, we suggested that urban planning in 
river-adjacent areas should prioritize the development of water reten
tion spaces. These spaces can mitigate urban flooding by reducing sur
face runoff through infiltration, detention, and storage.

Based on these findings, we propose scale-specific flood mitigation 
strategies. At the 1 km scale (S1), where steeper slopes help reduce 
flooding, planning should focus on localized drainage improvements 
such as micro-catchment designs, permeable pavements, and small-scale 
green infrastructure to enhance runoff management. At the 2 km scale 
(S2), where impervious surface expansion is the main driver, efforts 
should control urban sprawl and integrate stormwater management 
systems. At the 3 km scale (S3), where landscape configuration domi
nates, enhancing green corridors and maintaining landscape connec
tivity are critical for regulating water flow and reducing urban flood.

4.4. Limitations and future directions

This study provides insights into the impact of landscape patterns on 
urban flooding, but several limitations should be acknowledged. First, 
regarding data availability, the flood records used in this study were 
primarily sourced from social media, which may be spatially inconsis
tent. Future studies could integrate multiple data sources, such as citizen 
science records, remote sensing observations, and hydrological model 
simulations, to enhance data comprehensiveness and reliability. Second, 
in terms of modeling, stepwise Poisson regression effectively identifies 
key influencing factors, but it has some limitations in capturing 
nonlinear relationships and complex interactions between variables. 
Future research could explore the application of machine learning 

methods or spatial statistical models to enhance predictive performance. 
We further realize that this study primarily focused on surface landscape 
characteristics without explicitly considering the role of underground 
drainage systems. Urban flooding, however, results from an interplay 
between surface runoff and drainage capacity. This highlights the need 
for future studies to integrate surface landscape patterns with subsurface 
drainage networks for a more comprehensive flood risk assessment. 
Lastly, as this study was conducted in the urbanized area of Chengdu, 
generalizing our findings to other urban areas or to non-urban areas may 
be limited. Hence, future studies might benefit from integrating multi- 
source data, adopt spatial statistical models, and incorporate urban 
hydrodynamic models to refine and assess urban flood risks. This will 
ultimately support more informed decision-making in urban planning 
and flood management.

5. Conclusion

The key findings of this study are summarized as follows: 

(1) The significance of environmental factors to the PCs varied across 
scales. According to the PCA, landscape configuration accounted 
for the major variance at the 1 km and 2 km planning scales, 
while at the 3 km scale, topographic factors were the primary 
contributors. The Poisson regression results showed that each 
scale contained dominant factor: at the 1 km scale, topographic 
factors had the highest regression coefficient (− 1.1); at the 2 km 
scale, factors dominated by impervious areas had the largest co
efficient (0.88); and at the 3 km scale, landscape configuration 
factors had the most significant impact (− 0.41).

(2) The study shows that more fragmented and dispersed landscapes 
tend to decrease the occurrence of floods. In contrast, landscapes 
with high connectivity and aggregation, as well as those with 
extensive impervious surfaces, are associated with an increased 
flood risk. Distance to rivers plays a critical role, with areas 
farther from rivers experiencing less flooding. Topographic in
fluences showed that the DEM was negatively correlated with 
flooding across all scales, whereas slope and curvature exhibited 
a positive correlation at the 1 km scale, shifting to a negative 
correlation at larger scales.

(3) In the single-factor regression analysis, both AREAm and 
COHESION were significant at all three scale levels. Specifically, 
AREAm was significantly negatively correlated with flooding, 
indicating that larger mean patch areas are associated with less 
flooding. Conversely, COHESION showed a significant positive 
correlation with flooding at all scales, suggesting that more 
dispersed patches are linked to fewer flood events.

(4) Our multi-scale analysis provides theoretical guidance for urban 
planners in urban flooding management. It underscores the 
varying importance of landscape pattern and topographic factors 
in flood risk management. In this way, it highlights the need for 
scale-specific strategies in urban planning and flood mitigation.

CRediT authorship contribution statement

Yao Li: Writing – original draft, Conceptualization. Frank Badu 
Osei: Writing – review & editing, Visualization. Shaoqing Dai: Writing 
– review & editing, Visualization. Tangao Hu: Writing – review & 
editing, Investigation, Data curation. Alfred Stein: Writing – review & 
editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Y. Li et al.                                                                                                                                                                                                                                        Ecological Indicators 176 (2025) 113614 

10 



Acknowledgements

This work was supported by the "Pioneer and Leading Goose + X" 
S&T Program of Zhejiang (Grant No. 2025C02230), the National Natural 
Science Foundation of China (Grant No. 42471102), and a Fellowship 
from the China Scholarship Council (Grant No. 202008330335).

Data availability

Data will be made available on request.

References

Abdi, H., Williams, L.J., 2010. Principal component analysis. Wires Computational 
Statistics 2 (4), 433–459. https://doi.org/10.1002/wics.101.

Ali, A., Rana, I.A., Ali, A., Najam, F.A., 2022. Flood risk perception and communication: 
The role of hazard proximity. Journal of Environmental Management 316, 115309. 
https://doi.org/10.1016/j.jenvman.2022.115309.

Birkholz, S., Muro, M., Jeffrey, P., Smith, H.M., 2014. Rethinking the relationship 
between flood risk perception and flood management. Science of the Total 
Environment 478, 12–20. https://doi.org/10.1016/j.scitotenv.2014.01.061.

Chen, W., Wang, W., Huang, G., Wang, Z., Lai, C., Yang, Z., 2021. The capacity of grey 
infrastructure in urban flood management: A comprehensive analysis of grey 
infrastructure and the green-grey approach. International Journal of Disaster Risk 
Reduction 54, 102045. https://doi.org/10.1016/j.ijdrr.2021.102045.

Dai, S., Zhao, W., Wang, Y., Huang, X., Chen, Z., Lei, J., Stein, A., Jia, P., 2023. Assessing 
spatiotemporal bikeability using multi-source geospatial big data: A case study of 
Xiamen, China. International Journal of Applied Earth Observation and Geoinformation 
125, 103539. https://doi.org/10.1016/j.jag.2023.103539.

Davis, M., Naumann, S., 2017. Making the Case for Sustainable Urban Drainage Systems 
as a Nature-Based Solution to Urban Flooding. In: Kabisch, N., Korn, H., Stadler, J., 
Bonn, A. (Eds.), Nature-Based Solutions to Climate Change Adaptation in Urban Areas: 
Linkages between Science, Policy and Practice. Springer International Publishing, 
pp. 123–137. https://doi.org/10.1007/978-3-319-56091-5_8.

Diakakis, M., Deligiannakis, G., Pallikarakis, A., Skordoulis, M., 2017. Identifying 
elements that affect the probability of buildings to suffer flooding in urban areas 
using Google Street View. A case study from Athens metropolitan area in Greece. 
International Journal of Disaster Risk Reduction 22, 1–9. https://doi.org/10.1016/j. 
ijdrr.2017.02.002.

Fewtrell, T.J., Bates, P.D., Horritt, M., Hunter, N.M., 2008. Evaluating the effect of scale 
in flood inundation modelling in urban environments. Hydrological Processes 22 (26), 
5107–5118. https://doi.org/10.1002/hyp.7148.

Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Zhou, Y., 2020. Annual maps of global 
artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of 
Environment 236, 111510. https://doi.org/10.1016/j.rse.2019.111510.

Karimi, J.D., Corstanje, R., Harris, J.A., 2021. Understanding the importance of 
landscape configuration on ecosystem service bundles at a high resolution in urban 
landscapes in the UK. Landscape Ecology 36 (7), 2007–2024. https://doi.org/ 
10.1007/s10980-021-01200-2.

Kuo, P.-H., Shih, S.-S., Otte, M.L., 2021. Restoration recommendations for mitigating 
habitat fragmentation of a river corridor. Journal of Environmental Management 296, 
113197. https://doi.org/10.1016/j.jenvman.2021.113197.

Li, J., Zhou, K., Xie, B., Xiao, J., 2021. Impact of landscape pattern change on water- 
related ecosystem services: Comprehensive analysis based on heterogeneity 
perspective. Ecological Indicators 133, 108372. https://doi.org/10.1016/j. 
ecolind.2021.108372.

Li, J., Bortolot, Z.J., 2022. Quantifying the impacts of land cover change on catchment- 
scale urban flooding by classifying aerial images. Journal of Cleaner Production 344, 
130992. https://doi.org/10.1016/j.jclepro.2022.130992.

Li, Y., Osei, F.B., Hu, T., Stein, A., 2023a. Urban flood susceptibility mapping based on 
social media data in Chengdu city, China [Article]. Sustainable Cities and Society 88, 
104307. https://doi.org/10.1016/j.scs.2022.104307.

Li, Y., Wang, P., Lou, Y., Chen, C., Shen, C., Hu, T., 2024. Assessing urban drainage 
pressure and impacts of future climate change based on shared socioeconomic 
pathways. Journal of Hydrology: Regional Studies 53, 101760. https://doi.org/ 
10.1016/j.ejrh.2024.101760.

Li, Y., Ye, S., Wu, Q., Wu, Y., Qian, S., 2023b. Analysis and countermeasures of the “7.20” 
Flood in Zhengzhou. Journal of Asian Architecture and Building Engineering 22 (6), 
3782–3798.

Liu, J., Liu, X., Wang, Y., Li, Y., Jiang, Y., Fu, Y., Wu, J., 2020. Landscape composition or 
configuration: which contributes more to catchment hydrological flows and 
variations? Landscape Ecology 35 (7), 1531–1551. https://doi.org/10.1007/s10980- 
020-01035-3.

Ma, S., Li, Y., Zhang, Y., Wang, L.-J., Jiang, J., Zhang, J., 2022. Distinguishing the 
relative contributions of climate and land use/cover changes to ecosystem services 
from a geospatial perspective. Ecological Indicators 136, 108645. https://doi.org/ 
10.1016/j.ecolind.2022.108645.

Ma, X., Zhang, P., Yang, L., Qi, Y., Liu, J., Liu, L., Fan, X., Hou, K., 2024. Assessing the 
relative contributions, combined effects and multiscale uncertainty of future land 
use and climate change on water-related ecosystem services in Southwest China 

using a novel integrated modelling framework. Sustainable Cities and Society 106, 
105400. https://doi.org/10.1016/j.scs.2024.105400.

Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., 
Klotz, D., Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., 
Shalev, G., Shenzis, S., Tekalign, T.Y., Weitzner, D., Matias, Y., 2024. Global 
prediction of extreme floods in ungauged watersheds. Nature 627 (8004), 559–563. 
https://doi.org/10.1038/s41586-024-07145-1.

Neri, A., Villarini, G., Napolitano, F., 2020. Statistically-based projected changes in the 
frequency of flood events across the US Midwest. Journal of Hydrology 584, 124314. 
https://doi.org/10.1016/j.jhydrol.2019.124314.

Nowosad, J., Stepinski, T.F., 2018. Global inventory of landscape patterns and latent 
variables of landscape spatial configuration. Ecological Indicators 89, 159–167. 
https://doi.org/10.1016/j.ecolind.2018.02.007.

Osborne, P.E., Alvares-Sanches, T., 2019. Quantifying how landscape composition and 
configuration affect urban land surface temperatures using machine learning and 
neutral landscapes. Computers, Environment and Urban Systems 76, 80–90. https:// 
doi.org/10.1016/j.compenvurbsys.2019.04.003.

Pan, Z., Gao, G., Fu, B., Liu, S., Wang, J., He, J., Liu, D., 2023. Exploring the historical 
and future spatial interaction relationship between urbanization and ecosystem 
services in the Yangtze River Basin. China. JOURNAL OF CLEANER PRODUCTION 
428, 139401. https://doi.org/10.1016/j.jclepro.2023.139401.

Peng, Y., Wang, Q., Wang, H., Lin, Y., Song, J., Cui, T., Fan, M., 2019. Does landscape 
pattern influence the intensity of drought and flood? Ecological Indicators 103, 
173–181. https://doi.org/10.1016/j.ecolind.2019.04.007.

Rahimi, E., Barghjelveh, S., Dong, P., 2021. Quantifying how urban landscape 
heterogeneity affects land surface temperature at multiple scales. Journal of Ecology 
and Environment 45, 1–13.doi.. https://doi.org/10.1186/s41610-021-00203-z.

Saura, S., Castro, S., 2007. Scaling functions for landscape pattern metrics derived from 
remotely sensed data: Are their subpixel estimates really accurate? ISPRS Journal of 
Photogrammetry and Remote Sensing 62 (3), 201–216. https://doi.org/10.1016/j. 
isprsjprs.2007.03.004.

Schreiber, J.B., 2021. Issues and recommendations for exploratory factor analysis and 
principal component analysis. Research in Social & Administrative Pharmacy 17 (5), 
1004–1011. https://doi.org/10.1016/j.sapharm.2020.07.027.
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