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Climate change and rapid urbanization have led to increasingly frequent urban flooding, causing substantial
losses. While previous studies have examined the impact of land use types on flooding, few studies have explored
how the spatial distribution and configuration of land use (landscape patterns) influence urban flooding across
different scales. This study addresses this gap by investigating the effects of landscape patterns on urban flood
events in Chengdu, China. We constructed a comprehensive dataset comprising 28 flood influencing factors,
including landscape pattern, topographic, and hydrological characteristics. Using Principal Component Analysis
(PCA), we classified these variables and applied stepwise Poisson regression to evaluate how landscape patterns
affect urban flooding. Our findings show that key influencing factors vary by scales: at the 1 km scale, topo-
graphic factors were most important; at the 2 km scale, impervious areas had the largest impact; and at the 3 km
scale, landscape configuration factors were dominant. In particular, the mean patch area and cohesion were
consistently significant across all scales, indicating that more fragmented and dispersed landscapes tend to
reduce flooding occurrence. We conclude that scale is an important determinant for properly understanding the
contribution of landscape patterns to urban flood mitigation.

1. Introduction

The frequency, intensity, and severity of hydro-meteorological
events have significantly increased in recent decades due to global
climate change, leading to an increase in extreme flooding events (Li
etal., 2024; Nearing et al., 2024). By now, the number of people affected
by floods is nearly equivalent to that of all other natural disasters
combined (Ali et al., 2022; Birkholz et al., 2014). One reason is that
rapid urbanization has led to the expansion of impervious surfaces,
disrupting the natural surface water cycle and further exacerbating the
urban flood risk (Wang et al., 2023b). As evidenced by the historic
rainfall of 624.1 mm (Li et al., 2023b) on July 20, 2021, in Zhengzhou
city, the consequences of the flooding were catastrophic, including the
loss of 398 lives and economic damages totaling RMB 65.5 billion
(Zheng et al., 2022). Consequently, addressing urban flooding has
emerged as a critical issue for advancing resilient community con-
struction in China.

Urban flooding occurs in urban areas where heavy or continuous
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rainfall leads to serious waterlogging on roads and low-lying areas due
to inadequate drainage and infiltration capacity (Zhang et al., 2021).
Although underground drainage pipe networks can mitigate urban
flooding to some extent (Li et al., 2024), improvement of the drainage
system infrastructure is expensive (Chen et al., 2021; Davis & Naumann,
2017). From the perspective of urban planning, investigating the impact
of different surface environments on urban flooding and developing
disaster prevention strategies, are highly significant for reducing eco-
nomic losses and improving the safety of residents’ lives and property
(Zimmermann et al., 2016).

Climate change and rapid urbanization have profoundly altered
hydrological cycles in cities (Sun et al., 2023; Zhang et al., 2022),
leading to increased rainfall intensity, reduced infiltration, and accel-
erated runoff production (Ma et al., 2024). Urban expansion often re-
places natural land covers with impervious surfaces (Pan et al., 2023),
amplifying surface runoff and reducing water retention capacity (Ma
etal., 2022). Previous research has highlighted the impact of impervious
surfaces on urban flooding (Wang et al., 2022). Those areas play a
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critical role in influencing flooding by affecting water flow, flood
propagation, flow volume, and peak flow (Sohn et al., 2020). Recent
studies emphasized that the impact of floods is also influenced by the
overall characteristics of the landscape (Zhang et al., 2020). Two land-
scape ecological concepts have been used so far (Karimi et al., 2021):
landscape composition as the proportions of different land use types
within a specific landscape unit; and landscape configuration described
as the spatial arrangement of landscape units (Osborne & Alvares-
Sanches, 2019). While the influence of landscape composition on
flooding is well-studied, there has been limited research on the impact of
landscape configuration (Wang et al., 2023a).

Most studies have focused on single-scale (Li and Bortolot, 2022) or
single-factor (Sohn et al., 2020) analyses, overlooking their complex
interactions and scale effects. In heterogeneous urbanized areas,
multi-scale analysis is essential (Saura & Castro, 2007). The concept of
scale effect originates from landscape ecology. It indicates that land-
scape elements exhibit varying characteristics at different spatial scales.
Understanding the landscape structure in the context of spatial hetero-
geneity also requires multiscale information (Rahimi et al., 2021). The
scale effect is an important factor that relates to the complexity of
landscape phenomena (Simova and Gdulovd, 2012). A single-scale
analysis can provide partial information about landscape characteris-
tics, while considering multiple scales can reveal the complex relation-
ship between urban flooding and regulating factors. Considering the
scale effect can also help us to better understand how environmental
factors affect urban flooding.

This study aims to develop a novel multiscale and multifactor
framework to analyze the complex mechanisms driving urban flooding.
We focused on the urbanized central Chengdu area, known for its sus-
ceptibility to flooding (Li et al., 2023a). We employed a stepwise Poisson
regression model to quantify the complex relations between urban
flooding and influencing factors at different spatial scales. Our research
is driven by a set of research questions that aim to shed light on the
causes of urban flooding: (1) How do changes in scales affect the vari-
ation of influencing factors? (2) How do landscape pattern factors in-
fluence urban flooding across different scales? (3) What dominant
factors cause flooding to occur and at what scale? In this way, a better
understanding will be obtained of how urban flooding interacts with the
features of our cityscapes, thereby developing effective urban planning
strategies to mitigate flood risks.
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2. Materials and methodology
2.1. Study area and research framework

Chengdu is the capital city of Sichuan Province (Fig. 1b) and the
largest city in southwestern China (Fig. 1a), covering an area of 3,640
km?. Its resident population according to the seventh national census in
2021 reported a permanent population close to 21 million. Chengdu has
a subtropical monsoon climate with abundant rainfall in summer. With
its rapid urbanization and city expansion, Chengdu is facing increasingly
serious urban flooding issues during the summer. Considering the high
risk of urban flooding events in this region, it is representative to identify
the influencing factors of urban flooding. Our focus is on the municipal
districts that were affected by recurrent flood disasters, as shown in
Fig. lc.

This study utilized terrain data, remote sensing imagery, and land
use data to construct a database of surface influence factors. A Digital
Elevation Model (DEM) was obtained from ASTER GDEM V2 at a 30 m
resolution from the Geospatial Data Cloud platform (https://www.
gscloud.cn). Sentinel-2 images were acquired and processed through
the Google Earth Engine Platform (https://earthengine.google.com).
Land use data were obtained from the global land use/land cover (LULC)
dataset developed by Gong et al., (2020), which derived from Sentinel-2
images (10 m resolution) and generated annually using a deep learning
classification model trained on billions of manually labeled image
pixels. Administrative division data in Shapefile format were provided
by the Chengdu Civil Affairs Bureau. All datasets were clipped according
to administrative division boundaries to ensure consistent processing
areas. Flooding data originated from the Weibo platform and were
validated as reported previously (Li et al., 2023). A summary of the
datasets is provided in Table 1.

To provide a clear overview of the analytical process, Fig. 2 presents
the research workflow. After collecting the datasets including flood in-
ventory and fundamental datasets, we determined the analysis scales.
Then, influencing factors were classified into four categories: landscape
composition, landscape configuration, topographic, and hydrological
factors. We applied Principal Component Analysis (PCA) to reduce
dimensionality and stepwise Poisson regression to identify key flood-
driving factors. Finally, scale-specific flood management strategies
were developed based on the analysis results.
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Fig. 1. Study area: (a) Sichuan province located at the southwestern China; (b) Chendu city situated in the central part of Sichuan province; and (c) the municipal

districts of Chengdu city.
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Table 1 2.2. Determination of analysis scales
Datasets used in this study.
Data and format Spatial Time  Source The selection of analysis scales was based on both national urban
resolution planning standards and data limitations. According to the Construction
Flood records Point July Social Media data from and Application Regulations for Urban Flood Control System formulated
(Shapefile) 2018 Weibo by the China Association for Engineering Construction Standardization,
Topographic data 30m - ASTER GDEM V2 the minimum planning unit is 1 km?. Therefore, we adopted 1 km as the
(Raster) minimum scale (Fig. 3a). Considering the limited sample size of urban
Administrative Polygon 2018 Chengdu Civil Affairs . . .
boundaries Bureau flooding events, the maximum analysis scale was set at 3 km. Conse-
(Shapefile) quently, we defined three analysis scales: 1 km (S1), 2 km (S2), and 3 km
Sentinel 2 images 10m 2018 Google Earth Engine (S3). These scales therefore correspond to different levels of urban
(Raster) Platform spatial organization: the 1 km scale to localized drainage patterns and
River (Shapefile) Polygon 2018 National Catalogue service

micro-topographic variations; the 2 km scale to neighborhood-level
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Fig. 2. Research framework.
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2.3. Urban surface influencing factors

Landscape characteristics refer to the spatial arrangement of land
cover within a landscape. It encompasses landscape composition,
defined as the quantity of each land cover or land use type, and land-
scape configuration, defined as the spatial patterns and connectivity of
these types (Karimi et al., 2021). In landscape ecology, a variety of
metrics can be used to quantify landscape configuration at the patch,
class, and landscape levels. As shown in Fig. 4, a patch is the smallest
landscape unit, while a class refers to the overall characteristics of a
specific land cover type. The focus of our study is on the landscape level,
which refers to the spatial patterns and processes of an entire landscape,
including patches and classes.

We collected 28 influencing factors and categorized them into four
groups: 9 landscape composition factors, 12 landscape configuration
factors, 6 topographic factors, and 1 other factor. The definitions, ex-
pressions, and ecological description of each flood influencing factor are
detailed in Table 2.

(1) Landscape composition factors quantify the variety and abun-
dance of land cover types within a landscape. These factors influence
water infiltration and runoff processes, thereby affecting the extent of
urban flooding. To characterize landscape composition, we use Patch
Richness (PR) and the percentage of the landscape type (P;).

(2) Landscape configuration factors assess the spatial arrangement,
shape, and pattern of the land cover patches. They play a critical role in
water exchange and circulation which impacts the severity of urban
flooding. For example, the Largest Patch Index (LPI) reflects the domi-
nance of a single patch, with higher values indicating lower fragmen-
tation (Zou et al., 2022); Total Edge (TE) measures the degree of edge
complexity, affecting how water flows across patch boundaries (Kuo
et al., 2021); the Aggregation Index (AI) quantifies spatial continuity
and physical connectedness of patches, which influence surface runoff
and infiltration potential (Yin et al., 2025); and Shannon’s Diversity
Index (SHDI) captures landscape diversity and heterogeneity, being
closely linked to water retention capacity and flow redistribution (Li
et al.,, 2021). By interpreting these metrics, we gain ecological insight
into how landscape structure regulates hydrological responses such as
runoff generation and flood propagation. For this study, we selected 11
key factors, including 2 edge factors: TE and Edge Density (ED); two
patch size factors: LPI and Mean Patch Area (AREAm); four contagion/
interspersion factors: Al, Contagion (CONTAG), Landscape Shape Index
(LSI), and Patch Cohesion Index (COHESION); two subdivision factors:
Patch Density (PD) and Landscape Division Index (DIVISION); and one
diversity factor: SHDI. We employed the Fragstats 4.2 software (https:
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//www.fragstats.org) to obtain the landscape configuration metrics. A
moving window method was used, with window sizes according to the
defined scales set at 1 km, 2 km, and 3 km, respectively. This allowed us
to make localized assessments of landscape patterns for each analysis
unit. All landscape metrics were computed at the landscape level,
ensuring that the resulting indices accurately captured the spatial
composition and configuration that are relevant to urban flood analysis.

(3) Topographical variables can influence the distribution and flow
paths of surface runoff within a city. Elevation affects the direction of
water flow; slope impacts the speed of water flow; and curvature in-
fluences the convergence and dispersion of water. Here, we selected six
key topographic factors, including the mean and range values of
elevation, slope, and curvature within each landscape unit. The mean
values provide an overview of the overall terrain characteristics, while
the range values indicate the extent of variability within the landscape
unit.

(4) Hydrological factor: Distance to the river (DisRIVERm) was
included, as proximity to rivers can significantly influence flood risk. We
obtained the average distance from each analysis unit to the nearest
river using Euclidean distance analysis in ArcGIS (Zhang et al., 2016).

2.4. Statistical analysis

2.4.1. Principal component analysis

We employed a Principal Component Analysis (PCA) (Abdi & Wil-
liams, 2010) to reduce data dimensionality and extract key features.
PCA transforms the original variables into uncorrelated principal com-
ponents (PCs), effectively mitigating multicollinearity and focusing on
the most significant data features (Dai et al., 2023). First, we stan-
dardized the influencing factors as PCA is sensitive to variable magni-
tudes. Next, we calculated the covariance matrix to assess the linear
relationships between variables. The eigenvalues of the covariance
matrix, representing the variance explained by each principal compo-
nent (PC), were plotted in a scree plot, and the elbow method was used
to determine the optimal number of components to retain (Schreiber,
2021). The data were then transformed into the new feature space
defined by the PCs, effectively reducing dimensionality while preserving
most of the variance. Finally, we checked the proportion of variance
explained by the retained components to ensure that the reduced feature
set captured most of the original data’s variability.

We interpreted the PCs by examining their factor loadings. Variables
with absolute loadings > 0.55 were considered significant and retained
for further analysis. Loadings indicate the contributions of a variable to a
specific PC, with higher values signifying a stronger influence. The sign
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Fig. 4. A conceptual diagram that illustrates the relationship between patch, class, and landscape.
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Table 2
Summary and description of flood influencing factor used in the study.

Variable Formula Description (Unit)

Landscape composition factors

P; z}‘;@ij Percentage of land cover i (P;)
P = A within an analysis unit.
PR PR =n; Patch Richness (PR), the number of

different patch types within an
analysis unit.
Landscape configuration factors

LPI _ max(ay)

LPI The Largest Patch Index (LPI),

representing the percentage of the
landscape unit occupied by the
largest patch.
Total Edge (TE), which is the sum of
the lengths of all edge segments.
Edge Density (ED), defined as the
total edge in the landscape unit
divided by the total landscape area.
i Y Mean Patch Area (AREAm), the
- N average area of the corresponding
patches within an analysis unit
Average shape index of the
n,/a; corresponding patches within an
analysis unit.
Landscape Shape Index (LSI),
reflecting changes in patch shape
within an analysis unit.
Patch Density (PD), expressing the
number of patches per unit area.
Shannon’s Diversity Index,
reflecting landscape diversity,
complexity, and heterogeneity.
Division Index (DIVISION),
indicating the probability that two
randomly chosen pixels are not
situated in the same patch.
Al Aggregation Index (Al), quantifying
Al = the aggregation degree of patches

within an analysis unit.
m 8ii
. P;
> (max(gﬁ) ) '] x

(100)

TE I L
TE*Zi:l j:le‘J

ED ED =TE/A

AREA,
AREA,

SHAPE,, SHAPE. — 0.25P;
n =

LSI 0.25TE
LSI = —=—
VA

PD PD —

>z

SHDI SHDI = —> " (P;«InP;)

DIVISION DIVISION =

1 _Z:il Z;nx:l (%)2

100
CONTAG : g
s bl [ (s
CONTAG = (14 1B A
2In(m)
100
Contagion Index (CONTAG), measuring the extent to which landscape
elements are aggregated or dispersed.
COHESION

n " -1
1 7M X {1 - L} Cohesion
2 iPii /@G VZ
Index (COHESION), indicating the physical connectedness of the
corresponding patch type.
Topographic factors

COHESION = (100) x

Em - Mean elevation value within an
analysis unit.

E; E: = Emax —Emin Elevation range within an analysis
unit.

Sm - Mean slope value within an analysis
unit.

Se S: = Smax —Smin Slope range within an analysis unit.

Cm - Mean curvature value within an
analysis unit.

G C; = Cmax —Cnin Curvature range within an analysis

unit.
Hydrological factor
DisRIVERm  — Average distance to the river

network

N = the total number of patches, A = total landscape area, m= 8 means the total
number of patch types, i indicates the ith patch type (i <m),n; = the total
number of the ith patch type, j represent the jth patch in ith patch type, a; =
area of patch ij, P; = the proportion of the landscape occupied by patch type i,
e; = the length of edge involving patch type i, gix = the total number of times that
patch type i adjacent to type k, g; = the number of like adjacencies (joins) be-
tween pixels of patch type i based on the single-count method, max(g;) = the
maximum number of like adjacencies (joins) between pixels of patch type i based
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on the single-count method and P; = proportion of the landscape comprised of
patch type i.

of a loading reflects the direction of the relationship: a positive loading
indicates a direct association with the PC, whereas a negative loading
indicates an inverse association.

2.4.2. Stepwise Poisson regression model

We used a stepwise Poisson regression model to capture the rela-
tionship between flooding occurrences and the influencing factors from
PCA (Neri et al., 2020). A stepwise procedure allowed us to select those
components that have the most influence on the response variable. Here,
the count of flood events serves as the response variable, while the
influencing factors described in section 2.3 act as predictor variables.
We adopted a forward selection procedure, starting with an empty
model that only included the intercept. Variables were added step by
step, until no further improvement in model fit was achieved. During
this process, the procedure also checked whether the inclusion of a new
variable rendered any previously added variables redundant, in which
case those variables were removed. Through this iterative approach,
variables were added or removed to optimize the model’s goodness of
fit. Our model assumes that the number of flood occurrences per cell is a
realization from the Poisson distribution whose intensity 4; is expressed
as:

log(4:) = log(llasl)) + By + > Akt €b)

where 1 is the expected number of the flooding reporting points at each
observation cell, f, is the intercept, f, is the coefficients for the influ-
encing factor xi, K is the number of selected variables, log(||«;||) is an
offset term to adjust for scale effect, where ||a;|| represents the area of the
cell. By incorporating this log(||a;||), we adjust for the fact that larger
areas are more likely to have more flooding events simply due to their
size. This ensures that the model accounts for scale differences between
observation units, focusing on the true relationship between the influ-
encing factors and flooding occurrence.

3. Results
3.1. Determining the number of principal components

The scree plots with parallel analyses at scale levels S1, S2, and S3
(Fig. 5) indicate that the first PC shows a notably high eigenvalue—7.28
for S1, 7.72 for S2, and 7.3 for S3—followed by a sharp decline. This
suggests that the first PC alone accounts for approximately 30 % of the
total variance across the three scales. The first eight PCs have eigen-
values greater than 1, signifying that they capture the most significant
variance in influencing factors and are, therefore, considered important
for retention. considered significant and worth retaining. Notably, the
cumulative explained variance of the first eight PCs are larger than 80 %,
suggesting that they can effectively summarize the influencing factors.

3.2. Exploring analysis at S1

3.2.1. Principal components at S1

The Sankey diagram in Fig. 6 illustrates the contributions of various
influencing factors to the PCs at the 1 km planning scale. Each factor’s
contribution to a PC is represented by the value in parentheses, which
indicates the loading of that factor on the respective PC.

PCl1 is entirely composed of landscape configuration factors, while
PC2 is mainly influenced by topographic factors. This indicates that, at
the 1 km scale, landscape configuration factors are the primary variables
to consider, followed by topographic factors. PC1 shows high positive
loadings for ED, LSI, TE, SHDI, and DIVISION, indicating a strong pos-
itive correlation among these factors. These five factors primarily
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Fig. 6. Factor loadings of flood influencing factors on PCs at S1, with standardized loading values shown in parentheses.

represent landscape diversity. In contrast, AREAm and LPI have high
negative loadings, reflecting aggregation patterns. Together they
explain a large portion of the variance in the data related to landscape
configuration. PC3 is largely explained by COHESION (0.96). PC4 cap-
tures the variance explained by the landscape composition. PC5 mainly
reflects the influence of topographic factors, especially DEMm (0.81).
PC6-8 shows the influence of different types of landscape composition.

3.2.2. Poisson regression analysis at S1

Fig. 7 shows the estimated coefficients for each PC with their 95 %
confidence intervals. An increase in PC1 (Landscape edge & shape) and
PC2 (Slope & Curvature) is associated with an increase in flood occur-
rences. While PC3 (landscape contagion) and PC4 (landscape composi-
tion) are negatively related with flood events. The coefficient for PC5
(Elevation factors) is approximately —1.1, the largest in absolute value,
suggesting that the DEM-dominated PC5 has the greatest influence on
flood events, with lower elevations leading to more flood occurrences.
The confidence interval for PC7 includes zero, indicating that it is not

statistically significant. PC7 is composed of wetland and shrubland,

suggesting that these landscape compositions have a minimal impact on
flooding.

3.3. Exploring analysis at S2

3.3.1. Principal components at S2

The PCA results for S2 are depicted in Fig. 8, indicate that at the 2 km

planning scale, landscape configuration factors are the primary con-
tributors to data variance, as they dominate both PC1 and PC2. In
contrast, PC3 and PC4 are more influenced by topographic and land-
scape composition factors. This suggests that landscape configuration
factors explain the majority of variance at this scale, making them the
most critical variables to consider, followed by topographic and then
landscape composition factors. Specifically, PC1 is strongly associated
with factors such as DIVISION (0.87), SHDI (0.8), LPI (—0.87), and
CONTAG (—0.71), highlighting their significant role in data variability.
PC2 shows high positive loadings for LSI, TE, and ED, suggesting a
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Fig. 7. Poisson regression model coefficients with 95% confidence intervals
at S1.

positive correlation among these factors, which contribute to a similar
variance pattern. Conversely, Al and AREAm are inversely correlated
with PC2. Additionally, PC5 is primarily driven by COHESION, PC6 is
associated with curvature, and PC 7 and PC8 reflect landscape compo-
sition, particularly wetlands and bare land.
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3.3.2. Poisson regression analysis at S2

The Poisson regression coefficients for S2 was shown in Fig. 9. PC1
(landscape division) and PC3 (slope) display negative correlations with
urban floods, indicating that greater landscape division and steeper
slopes potentially mitigate flood risks at S2. In contrast, the positive
coefficient of PC2 highlights that larger patches in landscape units
contribute positively to the occurrence of urban floods. PC4, repre-
senting landscape composition factors with a focus on impervious areas,
shows the strongest positive coefficient (approximately 0.88). This
suggests that higher percentages of impervious areas significantly in-
crease the frequency of flooding events. Moreover, PC5-7 also has a
positive coefficient for flooding events, which indicating the landscape
connection factors and curvature may increase the flood risk. PC8,
which consists of bareland and shrubland, is not statistically significant,
indicating that these two landscape compositions have rarely influence
on flooding.

3.4. Exploring analysis at S3

3.4.1. Principal components at S3

Fig. 10 shows the PCA results at 3-km planning scale. PC1 is
composed of topographic factors, while PC2 consists of landscape
configuration factors. This suggests that, at the S3 scale, topographic
factors account for the most data variance, followed by landscape
configuration factors. In PC1, the positive loadings for slope and cur-
vature suggest that as these factors increase, the score for PC1 also rises.
In PC2, LPI (—0.95) and DIVISION (0.94) have the highest loadings,
indicating that PC2 captures the landscape’s division and fragmentation.
PC3 consists of PD and A, with PD representing the patch density of the
landscape. PC4-7 are composed from various sources of influencing
factors. Based on the factor loadings, PC4 is dominated by landscape
composition, PC5 by DEM, PC6 by landscape shape, and PC7 and PC8

[l DIVISION(0.87)

B LPI1(-0.87)

B SHDI1(0.8) PCI

[ ] CONTAG(-0.71)

[]Ls1(0.89)
[ TE(0.88) -
[1ED(0.73)

Landsacpe configuration factors

[] A1(-0.66) PC2

[ AREAm(-0.55) L]

[ SHAPEm(0.68)

[l COHESION(0.91) PC3
[1PD(-0.9)

| | SLOPEr(0.91)

Topographic factors

B SLOPEm(0.91)
[l DEMr(0.84) PC4

DEMm(0.62)

CURVI(0.98)

B CURVmM(0.98)

[ Other factors

Landscape composition factors

DisRIVERm(0.49)
CROPLAND(-0.84)
IMPERVIOUS(0.82)
GRASSLAND(0.79)
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[l WATER(0.57)
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Fig. 8. Factor loadings of flood influencing factors on PCs at S2, with standardized loading values shown in parentheses.
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Model Coefficients at S2

PC8 —

PC7 —

PC6 B

PC5 —

PC4 —

PC3 —

Principal components

PC2 —
PC1 —

(Intercept) -~ +—

-1.0 -05 0.0 0.5 1.0
Estimate

Fig. 9. Poisson regression model coefficients with 95% confidence intervals
at S2.

are primarily influenced by water and bareland, respectively.

3.4.2. Poisson regression analysis at S3

The negative coefficients for PC1, PC2, PC3, and PC5 imply the in-
crease of these factors will contribute to a decrease in flood occurrences
at this scale (Fig. 11). Among these, PC2 (landscape configuration fac-
tors) has the highest absolute value (0.41) of coefficients, meaning more
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diversity and division of the landscape will decrease the flood occur-
rences. PC5 could reflect the landscape composition factors, with in-
creases in impervious area being significantly associated with higher
flood risk. PC8, which consists of bare land, is not statistically signifi-
cant, indicating it exert little influence on flooding.

3.5. Stepwise Poisson regression analysis on the original factors

Table 3 presents the coefficient estimates (with standard errors) from
stepwise Poisson regression models. Variables with p-value < 0.05 are
considered significant for the regression model. Several influencing
factors were found to significantly influence urban flood events across
all three spatial scales (S1, S2, and S3).

For landscape configuration factors, AREAm and COHESION are
significant at all three scales. Specifically, AREAm is significantly
negatively correlated with flood events at all three scales, indicating that
more dispersed patches are associated with fewer flood events. In
contrast, COHESION shows a significant positive correlation with
flooding at all three scales. In model S1, an increase of one unit in the
COHESION index is associated with an expected increase of approxi-
mately 2.07 flooding events, holding all other variables constant.

For terrain factors, SLOPEr and CURVr are significant in all three
regression models. SLOPEr exhibits mixed effects across different scales:
in S1 and S3, the coefficients are positive, suggesting that steeper slopes
increase flood risk, whereas in S2, the coefficient is negative, implying
that relative slope decreases flood risk. Similarly, CURVr also shows
varying effects across scales. The negative coefficients in S1 and S3
suggest that areas with higher curvature are less prone to flooding.

DisRIVERm is significantly negatively correlated with flooding at all
three scales, indicating that areas closer to rivers are more prone to
flooding.
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[l SLOPEm(0.92)
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PCl1
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Landscape composition factors
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Fig. 10. Factor loadings of flood influencing factors on PCs at S3, with standardized loading values shown in parentheses.
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Fig. 11. Poisson regression model coefficients with 95% confidence intervals
at S3.

4. Discussion
4.1. The influence of landscape patterns on urban flooding

Currently, several studies have been carried out on the effect of
landscape on water flows. For example, Liu et al. (2020) investigated the
relationship between the landscape pattern and hydrological flows, but
the effect of landscape on urban flood events still remains unclear
(Diakakis et al., 2017). Our study found landscape configuration had a
more significant impact to flood events than landscape composition,
which has similar patterns to Liu et al. (2020)’s conclusion: in sub-
tropical catchments, landscape pattern has more effect on hydrological
flows than landscape composition. The regression results showed that
the division landscape group always show negative influence on urban

Table 3
Stepwise Poisson regression results for influencing factors at different scales.
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flood events. We have noticed that the PCA results categorized the
landscape configuration as three groups: division & complexity,
connection & aggregation, and shape & size. These results confirm the
existing evidence in Nowosad and Stepinski (2018) who showed that
two type of variables — complexity and aggregation can explain 70 % of
the variability of geometric landscape configurations globally.

Specific landscape configuration factors: COHESION and AREAm
were significantly correlated with flooding across all scales. The positive
regression coefficient for COHESION indicates that higher COHESION
values—representing more connected and continuous landscape
patches—can increase flooding risk. This is consistent with Zhang et al.
(2020)’s findings, which showed that the aggregation of impervious
surfaces amplifies urban flooding events. In contrast, AREAm was
negatively correlated with flooding. Larger patch areas often have a
dominant patch, reflect more natural surfaces with more green space,
thereby reducing flood risk (Peng et al., 2019).

4.2. Scale effects

Our findings exhibit strong scale effects, and we recommend that
each scale should be given specific focus depending on the stage of
planning or the scale of analysis. Previous research (Zhang et al., 2020b)
has also demonstrated that the explanatory power of a given factor can
vary across different scales, sometimes even reversing the direction of
correlation. Although this can lead to contradictory or challenging in-
terpretations of results, it also underscores the necessity of multi-scale
studies. Especially in the field of planning and management, different
scales can reveal varying levels of information, as highlighted by Liu
et al. (2020).

Our study suggests that when considering scale effects, attention
should be paid to three key aspects: (1) The diversity of landscape
patterns: at larger scales, the diversity of landscape composition in-
creases, encompassing various land uses and covers, such as urban
buildings, green spaces, and water bodies. This diversity has a more
pronounced impact on hydrological responses, as different landscape
types influence interception, infiltration, and runoff differently. In
smaller-scale areas, landscape types may be more uniform, and their
impact may be relatively minor. (2) Statistical aspects: in statistical
analysis, the sample size and range of variability significantly affect the

Coefficient Estimate (std error)

S$2 model

S3 model

Factors S1 model
(Intercept) —3.034"""(0.146)
Landscape configuration PD —1.655"""(0.243)
TE 4.633%(2.219)
LPI
ED
LSI —3.87:(2.189)
AREAm —-1.18""°(0.155)
SHAPEm —0.68"""(0.155)
CONTAG -0.535"""(0.122)
COHESION 2.071"°(0.711)
DIVISION 0.186(0.118)
PR 0.18%(0.084)
SHDI —0.851"""(0.142)
Topographic factors DEMm —0.42""°(0.115)
DEMr 0.96"""(0.151)
SLOPEm —~13.763"(5.207)
SLOPEr 13.3317(5.117)
CURVm 0.88"(0.148)
CURVr ~1.044""(0.192)
Hydrological factors DisRIVERm —0.24""(0.038)
Landscape composition VEGETATION
WATER
IMPERVIOUS

—4.342"(1.094)
—1.238%*%(0.364)
—10.186(6.397)
—0.413"7(0.124)
—12.044(6.829)
21.863(12.89)
—-1.03""°(0.149)

1.558"7°(0.403)

—0.151°(0.083)

—8.327%(2.652)

—5.516  (1.094)

—0.194 " (0.038)

0.216"7(0.032)
1.13777(0.05)

—-5.516"""(1.094)
—~18.486"""(7.589)
—20.269%(8.173)
38.055*(15.168)
—0.242%(0.058)

2.261"°(0.652)
0.899°°(0.274)

—0.674"""(0.199)
1.962777(0.526)

—0.668"""(0.143)

—0.364"""(0.089)

—0.278"7(0.038)

20.87""(5.788)

22.001"(5.797)

Note: Signif. codes: ***(p < 0.001), ** (p < 0.01), *(p < 0.05)," (p < 0.1), (p > 0.1); NA: Variables not selected. Highlighted factors significantly influencing urban

flood events across all three spatial scales.
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significance of results. Larger-scale areas provide more data points and a
broader range of variability, potentially enhancing the statistical
model’s ability to detect significant relationships. When the study area
and sample size are fixed, however, using overly large study units may
result in an insufficient number of samples, while using overly small
units could lead to each unit containing too few data points. This
imbalance can make it challenging to demonstrate statistically signifi-
cant relationships. (3) Efficiency and Computational Power: as scale
increases in resolution, the processing power and computation time
required also increase. Finer scales demand more computational re-
sources and time, as noted by (Fewtrell et al., 2008).

4.3. Implications for urban flooding reduction

By means of a PCA and a stepwise Poisson regression analysis of 28
influencing factors, we identified several key indicators that can be used
to reduce urban flooding.

From a landscape perspective, a more dispersed spatial pattern and
greater diversity in landscape compositions consistently reduce the
occurrence of flooding across all scales. Additionally, decreasing the
proportion of impervious surfaces is an effective strategy. Therefore, we
recommend that urban planning prioritize maintaining a sufficient
proportion of green spaces and ensure that impervious areas are more
spatially dispersed distributed.

From the topographic perspective, several factors show different
effect on flooding events. At smaller scales (1 km), areas with higher
slopes are more effective in mitigating flood events. Therefore, we
suggested constructing sunken catchment areas could be beneficial at
this scale. In contrast, at larger scales, maintaining relatively flat terrain
is advisable; however, low-lying areas tend to be more prone to water
accumulation. This aligns with previous studies (Zhang et al., 2020a),
which suggest that in low-lying areas, the elevation of sunken green
spaces or roadbeds should be 5-30 cm lower than the surrounding
surface to increase slope and reduce flooding risk.

From the hydrological perspective, areas near rivers are more sus-
ceptible to flooding. This increased risk is likely because many drainage
systems are connected to rivers, and during the rainy season, rising river
levels can impede drainage, leading to potential backflow and even
overflow of riverbanks. Therefore, we suggested that urban planning in
river-adjacent areas should prioritize the development of water reten-
tion spaces. These spaces can mitigate urban flooding by reducing sur-
face runoff through infiltration, detention, and storage.

Based on these findings, we propose scale-specific flood mitigation
strategies. At the 1 km scale (S1), where steeper slopes help reduce
flooding, planning should focus on localized drainage improvements
such as micro-catchment designs, permeable pavements, and small-scale
green infrastructure to enhance runoff management. At the 2 km scale
(S2), where impervious surface expansion is the main driver, efforts
should control urban sprawl and integrate stormwater management
systems. At the 3 km scale (S3), where landscape configuration domi-
nates, enhancing green corridors and maintaining landscape connec-
tivity are critical for regulating water flow and reducing urban flood.

4.4. Limitations and future directions

This study provides insights into the impact of landscape patterns on
urban flooding, but several limitations should be acknowledged. First,
regarding data availability, the flood records used in this study were
primarily sourced from social media, which may be spatially inconsis-
tent. Future studies could integrate multiple data sources, such as citizen
science records, remote sensing observations, and hydrological model
simulations, to enhance data comprehensiveness and reliability. Second,
in terms of modeling, stepwise Poisson regression effectively identifies
key influencing factors, but it has some limitations in capturing
nonlinear relationships and complex interactions between variables.
Future research could explore the application of machine learning
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methods or spatial statistical models to enhance predictive performance.
We further realize that this study primarily focused on surface landscape
characteristics without explicitly considering the role of underground
drainage systems. Urban flooding, however, results from an interplay
between surface runoff and drainage capacity. This highlights the need
for future studies to integrate surface landscape patterns with subsurface
drainage networks for a more comprehensive flood risk assessment.
Lastly, as this study was conducted in the urbanized area of Chengdu,
generalizing our findings to other urban areas or to non-urban areas may
be limited. Hence, future studies might benefit from integrating multi-
source data, adopt spatial statistical models, and incorporate urban
hydrodynamic models to refine and assess urban flood risks. This will
ultimately support more informed decision-making in urban planning
and flood management.

5. Conclusion
The key findings of this study are summarized as follows:

(1) The significance of environmental factors to the PCs varied across
scales. According to the PCA, landscape configuration accounted
for the major variance at the 1 km and 2 km planning scales,
while at the 3 km scale, topographic factors were the primary
contributors. The Poisson regression results showed that each
scale contained dominant factor: at the 1 km scale, topographic
factors had the highest regression coefficient (—1.1); at the 2 km
scale, factors dominated by impervious areas had the largest co-
efficient (0.88); and at the 3 km scale, landscape configuration
factors had the most significant impact (—0.41).

The study shows that more fragmented and dispersed landscapes
tend to decrease the occurrence of floods. In contrast, landscapes
with high connectivity and aggregation, as well as those with
extensive impervious surfaces, are associated with an increased
flood risk. Distance to rivers plays a critical role, with areas
farther from rivers experiencing less flooding. Topographic in-
fluences showed that the DEM was negatively correlated with
flooding across all scales, whereas slope and curvature exhibited
a positive correlation at the 1 km scale, shifting to a negative
correlation at larger scales.

In the single-factor regression analysis, both AREAm and
COHESION were significant at all three scale levels. Specifically,
AREAm was significantly negatively correlated with flooding,
indicating that larger mean patch areas are associated with less
flooding. Conversely, COHESION showed a significant positive
correlation with flooding at all scales, suggesting that more
dispersed patches are linked to fewer flood events.

Our multi-scale analysis provides theoretical guidance for urban
planners in urban flooding management. It underscores the
varying importance of landscape pattern and topographic factors
in flood risk management. In this way, it highlights the need for
scale-specific strategies in urban planning and flood mitigation.
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