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A B S T R A C T

High-resolution gridded population data are crucial for various fields. Estimating heterogeneous urban pop-
ulations presents challenges due to nonlinear relationships between influential factors and population density,
which vary spatially across grids within different land-use parcels. This study developed a Contextualized
Geographically Weighted Neural Network (CGWNN) model to estimate population density on 100 × 100m grid
cells in Beijing, China, using multi-source data. This model integrated the artificial neural network with
geographically weighted regression to account for nonlinear associations that are similar across proximate grids.
By incorporating parcel-level land uses as variable weights, it also considered contextually varying associations
across proximate grids located in different land-use parcels. Our CGWNN model achieved superior accuracy (R2

= 0.85) compared to other models that ignored the aforementioned associations and widely used population
datasets. The top three important variables were the distances to the nearest school, restaurant, and auto service,
all negatively associated with population density. Additionally, the intensity of artificial light at night (ALAN)
exhibited both positive and negative associations with population density in different regions, suggesting that the
increased ALAN did not necessarily indicate higher population density in urban areas. Our modeling approach
shows promise for accurate population estimation, which could be extended to larger areas, benefiting various
fields.

1. Introduction

Urban populations are expected to reach five billion by 2030, ac-
counting for more than half of the global population (Seto et al., 2012).
Understanding their spatial distribution is fundamental for various
fields, such as urban planning (Mallick et al., 2021), disaster response
(Ding et al., 2025), and health management (Jia et al., 2019). Tradi-
tional population products (e.g., census data), usually depicted by
choropleth maps, illustrate aggregated population counts over admin-
istrative units (Mennis, 2003). However, administrative boundaries are
often in irregular shapes with a coarse spatial resolution, leading to

difficulties in revealing spatial heterogeneities of population distribu-
tion within administrative units, and in combining with other
high-resolution gridded products (e.g., gridded meteorological datasets)
for greater use (Martin, 2011, pp. 655–665). This issue is particularly
pronounced in urban areas, where patterns of population distribution
are usually more complex and vary more substantially across geography
than in rural areas (Jia et al., 2014). However, urban areas have usually
been considered as one category (i.e., impervious surface) in land cover
products (Chen et al., 2021), the most frequently used ancillary datasets
in fine-scale population estimation (Lei et al., 2023), which prevent from
capturing intra-urban variations of population density.
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High-resolution gridded population products have been a promising
solution to address the aforementioned challenges, which could be
generated by two major methods: top-down and bottom-up (Wardrop
et al., 2018). Top-down methods usually use the weights, produced from
population density-related ancillary data, to assist in redistributing
census population counts onto finer-scale grids (Jia & Gaughan, 2016);
bottom-up methods usually establish the grid-level associations between
influential factors, produced from ancillary data, and population density
in small areas (e.g., micro-census) and then extrapolate them to larger
areas (Boo et al., 2022; Leasure et al., 2020). The latter has been
considered the most feasible approach for population estimation, as the
former relies more on the high-quality collection of census data, which
are costly, labor-intensive, and time-consuming. Traditional regression
(e.g., ordinary least squares regression) was initially used to estimate the
associations between influential factors and population density,
assuming that these associations were stable among all grids (Song et al.,
2019). Nevertheless, such associations may vary spatially across grids,
which have been more accurately estimated by geographically weighted
regression (GWR) (Roni & Jia, 2020; Song et al., 2019), under the
assumption that the associations in nearby grids tend to be more similar
than those in distant grids (Fotheringham et al., 1998; Tobler, 1970).
However, such spatial similarity may be disrupted by different attributes
(e.g., land use) of the parcels in which the grids are located, leading to
less similar associations in even nearby grids (Griffith, 2006; Qiu et al.,
2020). For example, the association between nightlight intensity and
population density in a residential and an industrial grid, although
proximate geographically, could be substantially distinct (Song et al.,
2019; Wang et al., 2018). Such contextual attributes should thus be
considered for more accurate population estimation in urban areas.

Contextualized GWR (CGWR) extends traditional GWR to better
capture the varying association across geography by incorporating
contextual (parcel in this study) information in the GWR weights matrix,
offering a potential solution to the aforementioned issue (Harris et al.,
2013). However, when applied for population estimation, CGWR has
encountered at least two technical difficulties. One is that CGWR mea-
sures contextual differences across parcels by the Euclidean distance,
which is applicable for numerical and ordinal data rather than nominal
data (Boriah et al., 2008). This makes CGWR inappropriate for popu-
lation estimation, as contextual attributes of parcels may be nominal,
such as land cover and land use categories. The other difficulty is that
CGWR uses linear models to estimate the associations between influ-
ential factors and population density, which, in the real world, may be
more complex, usually nonlinear (Qiu et al., 2020). Previous studies
have employed machine learning methods, such as random forest (Chen
et al., 2024) and artificial neural networks (ANN) (Cheng et al., 2021), to
estimate nonlinear associations between influential factors and popu-
lation density. Moreover, those machine learning methods have been
combined with GWR to model spatially varying nonlinear associations
in other research areas than population estimation (Feng et al., 2021;
Wei et al., 2020). However, to the best knowledge of the authors, all
existing studies of grid-level population estimation have overlooked the
impacts of contextual attributes of parcels on the grid-level associations
between influential factors and population density.

To fill the aforementioned gaps, this study developed a novel
contextualized geographically weighted neural network (CGWNN)
method to estimate urban population density in 100 × 100m grids, by
considering nonlinear and contextually varying associations between
influential factors and population density at the grid level. A dataset
named essential urban land use categories in China (EULUC-China)
(Gong et al., 2020), including detailed information of urban land use,
was used to provide the contextual information of the parcel. To
demonstrate the advantages of the CGWNN, the gridded population
product produced from this study was compared with several
well-known population products, including WorldPop, Global Human
Settlement Population Grid (GHS-POP), Gridded Population of the
World (GPW), and LandScan Global. The CGWNN method developed in

Table 1
Datasets used in this study.

Data Format Description Year Source

Census Table The 7th national
population census
data at the township
level

2020 National Bureau of
Statistics of China

Boundary
maps

Polygon Township-level
administrative
boundaries

2020 Chinese Academy of
Surveying and
Mapping

WorldPop Raster Gridded population
product with a 100-m
resolution

2020 University of
Southampton, UK

GHS-POP Raster Gridded population
product with a 100-m
resolution

2020 Joint Research
Center, European
Commission

GPW Raster Gridded population
product with a 1-km
resolution

2020 Center for
International Earth
Science Information
Network, Columbia
University, USA

LandScan
Global

Raster Gridded population
product with a 1-km
resolution

2020 Oak Ridge National
Laboratory, USA

NPP-VIIRS
ALAN

Raster Annual composite
intensity of ALAN at a
500-m resolution

2020 Colorado School of
Mines, USA

ASTER
GDEM
Version 3

Raster Elevation dataset at a
30-m resolution

– NASA, USA

MOD13Q1
NDVI

Raster NDVI dataset with a
250-m resolution

2020 NASA, USA

Points of
interest

Point 18 categories:
residential
community,
restaurant, bank,
school, hotel, hospital,
toll station,
transportation service
(e.g., parking lots, and
bus stations), tourist
attraction, auto
service, government
building, public
facility (e.g., public
toilets, kiosks), sport
and recreation,
company, daily life
service (e.g., post
offices, barber shops),
shopping service,
passing facility (e.g.,
courtyard doors), and
other addresses (e.g.,
village names, address
numbers)

2020 AutoNavi Software
Co., Ltd., China

EULUC-
China

Polygon 5 themes including 12
categories of urban
land use: residential,
commercial (business
office, commercial
service), industrial,
transportation (road,
transportation
stations, airport
facilities), public
management and
service
(administrative,
educational, medical,
sport and cultural,
park and greenspace)

2018 Tsinghua University,
China

ALAN, artificial light at night; ASTER GDEM, Advanced Spaceborne Thermal
Emission and Reflection Radiometer Global Digital Elevation Model; EULUC,
essential urban land use categories; GHS-POP, Global Human Settlement Pop-
ulation Grid; GPW, Gridded Population of the World; MOD13Q1, Moderate-
resolution Imaging Spectroradiometer Vegetation Indices; NASA, National

G. Qiu et al.



Applied Geography 182 (2025) 103708

3

this study holds great promise not only for population estimation and
the fields relying heavily on such fundamental population products, but
also for many other research and application fields where similar
methodological bottlenecks (e.g., incapable of considering non-linear
associations and contextual information) have limited the modeling
accuracy.

2. Methods

2.1. Datasets

The datasets used in this study covered the cities of Beijing and
Shanghai, with Beijing serving as the study area for model development
and Shanghai used to evaluate the generalizability of the proposed
model. These datasets included census, remote sensing, social sensing,
and land use data. The latest Census 2020 and administrative boundary
data at the township level (equivalent to the Global Administrative Unit
Layers at Level 4) were acquired from the National Bureau of Statistics of
China and the Chinese Academy of Surveying and Mapping (Table 1).
The four well-known gridded population products for the year 2020,
including WorldPop (Gaughan et al., 2016), GHS-POP (Carioli et al.,
2023), GPW (Center For International Earth Science Information
Network-CIESIN-Columbia University, 2018), and LandScan Global
(Sims et al., 2023), were used to compare with the population product
produced in this study.

Various types of remote sensing data that could reflect the extent of
human activities were used as ancillary data: the intensity of artificial
light at night (ALAN) was obtained from the Suomi National Polar-
Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-
VIIRS) with a 500-m resolution (Elvidge et al., 2021); elevation and
slope were derived from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Global Digital Elevation Model
(GDEM) with a 30-m resolution (Jacobsen & Passini, 2010); the

normalized difference vegetation index (NDVI) was obtained from the
Moderate-resolution Imaging Spectroradiometer Vegetation Indices
(MOD13Q1) data with a 250-m resolution (Didan, 2021). Points of in-
terest (POIs), an important type of social sensing data representing the
places with (x, y) coordinates on maps, were obtained from the Amap
Service, which included 18 categories such as residential community,
restaurant, bank, school, and hotel. Additionally, the EULUC-China was
produced from dividing impervious surfaces into small parcels by road
networks, which included 12 categories such as residential parcel,
business office, commercial services, industrial parcel, and road (Gong
et al., 2020).

2.2. Data preprocessing and variable selection

This study employed a bottom-up approach for population estima-
tion, which generates population products in the entire region based on
the associations between influential factors and population density
established in sampling areas at the grid level. As the grid-level popu-
lation numbers (dependent variable) are not available in census data,
they were produced by disaggregating the township-level population
numbers (the finest publicly available census data) onto grids using
WorldPop population counts (the finest gridded population counts) as
weights (Zhuang et al., 2021). Ten grids were randomly selected from
each township, with the population counts in selected grids logarith-
mically transformed to reduce skewness (Figs. 1–2). An uncertainty
propagation analysis was conducted to assess the impact of the un-
certainties in the approach on the results, stemming primarily from
estimation biases/errors in WorldPop grids.

All ancillary data (independent variables) except EULUC-China were
standardized by converting grids with different spatial resolutions into
100 × 100m grids: ALAN and NDVI, with the coarser resolution than
100m, were resampled to 100m by a bilinear interpolation method,
prior to which NDVI was calculated as the maximum values during July
and August due to cloud coverage in single MOD13Q1 NDVI images
(Piao et al., 2003); elevation and slope, with the finer resolution than
100m, were aggregated to 100m by calculating the mean values; the
density of POIs of each category was calculated as the counts (per unit

Aeronautics and Space Administration; NDVI, normalized difference vegetation
index; NPP-VIIRS, Suomi National Polar-Orbiting Partnership Visible Infrared
Imaging Radiometer Suite.

Fig. 1. Population and land use characteristics in Beijing, China: (a) township-level population counts and random sampling areas of grid-level population density;
(b) land use map.
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area) falling within the grid, while the distance to the nearest POI of
each category was calculated as the distance from the center of the grid
(equal to 0 if the nearest POI fell within the grid) (Bakillah et al., 2014).

The selection of the aforementioned variables for population esti-
mation was made by a Boruta algorithm (Kursa& Rudnicki, 2010). First,
an extended dataset was generated by creating shuffled copies of all
independent variables and appending them to the original data. Then,
Boruta applied a random forest regressor to the extended dataset, and
evaluated the importance of each variable to population estimation by a

mean decrease accuracy (MDA) metric, which was calculated by
randomly permuting each variable and measuring the resulting drop in
model accuracy. This step was repeated 99 times to generate stable
distributions of importance scores. The variables with the importance
scores significantly and consistently higher than those of the most
important shuffled copies were considered necessary and used for pop-
ulation estimation.

Fig. 2. The flowchart of general procedure in this study. ALAN, artificial light at night; ANN, artificial neural network; CGWNN, contextualized geographically
weighted neural network; EULUC, essential urban land use categories; GHS-POP, Global Human Settlement Population Grid; GPW, Gridded Population of the World;
GWNN, geographically weighted neural network; GWR, geographically weighted regression; NDVI, normalized difference vegetation index; POI, point of interest;
OLS, ordinary least squares.

Fig. 3. The architecture of the proposed contextualized geographically weighted neural network. xu
i , longitude of the grid i; xv

i , latitude of the grid i; xz
i , contextual

attribute (i.e., land use) of the grid i; βik, weight of kth independent variable affected by xu
i , xv

i , and xz
i ; xik, kth independent variable.

G. Qiu et al.
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2.3. CGWNN model development

This study developed a CGWNN to estimate associations between
influential factors and population density at the grid level. The model
integrated the strength of ANN in capturing nonlinear relationships and
the advantage of GWR in capturing spatially varying relationships,
enabling it to capture spatially varying nonlinear associations that tend
to be more similar among proximate grids. In addition to geographical
proximity, the model also incorporates contextual disparity by weight-
ing influential factors with parcel-level land use, explicitly addressing
abrupt variations in these associations across nearby parcels. The pro-
posed CGWNN can be mathematically formulated as follows:

yi = σ
(
W4⋅σ

(
W3⋅[βi1xi1, βi2xi2,⋯, βikxik]

T
+ b3

)
+ b4

)

βi = σ
(
W2⋅σ

(
W1⋅[ui, vi, zi]T + b1

)
+ b2

) (1)

where yi denotes population density in grid i; xi = xi1, xi2, ⋯, xik,
denoting independent variables in grid i; βi = βi1,βi2,⋯,βik, denoting the
weights of xi, varies depending on spatial coordinates and context; W3,
W4 and b3, b4 denote the weight matrices and bias terms of two hidden
layers in a fully connected neural network, accounting for nonlinear
transformations from weighted independent variables βixi to yi; W1, W2
and b1, b2 denote the weight matrices and bias terms of two hidden
layers in another neural network, which considers effects of spatial co-
ordinates (ui, vi) and contextual variable zi (i.e., land use) on the weight
βi; σ denotes the ReLU activation function applied at each hidden layer
(Fig. 3).

To establish the CGWNN model, the sampling grids were divided into
training, validation, and testing datasets at a proportion of 8:1:1. The
model was trained using the Adam optimizer (learning rate = 0.001),
with 20 neurons per hidden layer, a batch size of 600, and 200 epochs.
Model parameters were updated using the backward propagation of
errors calculated by the mean square error (MSE) loss function. SHapley
Additive exPlanations (SHAP) were applied to interpret the established
associations between population density and variables. Once trained,
the model was applied to estimate population density in all 100-m grids
covering Beijing. This approach helps avoid potential underestimations,
as limiting estimates to residential parcels might overlook populations
residing in areas misclassified as non-residential due to inherent un-
certainties in land use data.

2.4. Model comparison and accuracy assessment

To demonstrate the advantages of CGWNN, several models were
established for comparison, including geographically weighted neural
network (GWNN), GWR, and ordinary least squares regression (OLS).
The comparison between CGWNN and GWNN aimed to highlight the
importance of integrating contextually varying associations between
influential factors and population density in improving population
estimation accuracy. Although various forms of GWNN have been pro-
posed in previous studies (Du et al., 2020; Zhang et al., 2022), they often
differ from the CGWNN in both network architecture and the way input
features are treated or spatially processed, making direct comparisons
difficult. To ensure a controlled ablation experiment, a GWNN model
was implemented using the same architecture and input variables as
CGWNN, but using land use as an independent variable rather than a
contextual variable, allowing for a fair assessment of the added value of
contextual weighting. The mathematical expression of this GWNN is
shown as follows:

yi = σ
(

W4⋅σ
(

W3⋅
[
βi1xi1, βi2xi2,⋯, βikxik, βi(k+1)xiLU

]T
+ b3

)
+ b4

)

βi = σ
(
W2⋅σ

(
W1⋅[ui, vi]T + b1

)
+ b2

) (2)

where yi denotes population density in grid i; xi = xi1, xi2, ⋯, xik, xiLU,
denoting independent variables in grid i; βi = βi1,βi2,⋯,βi(k+1), denoting
the weights of xi, varies solely depending on spatial coordinates; W3, W4

and b3, b4 denote the weight matrices and bias terms of two hidden
layers in a fully connected neural network, accounting for nonlinear
transformations from weighted independent variables βixi to yi; xiLU
denotes land uses and used as an independent variable; W1, W2 and b1,
b2 denote the weight matrices and bias terms of two hidden layers in a
fully connected neural network, considering only the effect of spatial
coordinates (ui, vi) on weight βi; σ denotes the ReLU activation function
applied at each hidden layer. The same settings (i.e., activation function,
optimizer, learning rate, neuron number in each hidden layer, batch
size, epoch, and loss function) used for CGWNN were applied to GWNN
to ensure comparability. ANN-based models, such as CGWNN and
GWNN, randomly initialize parameters, which may cause slight varia-
tions in model performance. As such, to make a more robust comparison
between CGWNN and GWNN, this study established 10 models for
CGWNN and GWNN, respectively, and compared the average perfor-
mance between the two sets of models. However, for more effective
subsequent visualization and comparison of the resulting population
products, the best among the 10 CGWNN models and the optimal among
the 10 GWNN models were selected as the main models. To prevent
potential overfitting, the difference between training loss and validation
loss in the last epoch was monitored for the established CGWNN and
GWNN models based on Cohen’s d (Prechelt, 1998):

Cohenʹs d=
xtraining − xvalidation

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SD2

training + SD2
validation

/2
√ (3)

where xtraining and xvalidation denote the mean training loss and mean
validation loss, respectively, for the final epoch of the 10 CGWNN or
GWNN models; SDtraining and SDvalidation denote the standard deviations of
the training and validation losses for the final epoch of the CGWNN or
GWNN models. Cohen’s d values smaller than 0.2 indicate a small and
negligible difference. Moreover, GWNN was compared with GWR model
to emphasize the expected nonlinear associations between influential
factors and population density; two GWR models were compared to
evaluate the importance of incorporating land use as an independent
variable in population estimation, one of which included land use
(GWR-LU) and the other did not; OLS and GWR models were compared
to illustrate the existence of spatially varying associations between
influential factors and population density.

The OLS, GWR, GWR-LU, GWNN, and CGWNN models were
compared at both grid and township levels. The grid-level accuracy
assessment was conducted to evaluate the effectiveness of the different
models. The aforementioned testing dataset, accounting for 10 % of the
sampling grids, was used to assess the performance of each model. Three
commonly used metrics — root mean square error (RMSE), mean ab-
solute error (MAE), and the coefficient of determination (R2) — were
employed. Moreover, to evaluate the relative accuracy of population
products generated by different models, each product was aggregated at
the township level and compared with census population counts.
WorldPop, GHS-POP, GPW, and LandScan Global were also compared
with these products at the township level. To enhance the comprehen-
siveness of the accuracy assessment, mean absolute percentage error
(MAPE) was additionally included as a supplementary metric for
township-level accuracy assessment, offering insights from the
perspective of relative error. However, for grid-level assessment, MAPE
was not applied due to the possibility of zero population in certain grids,
which would render MAPE undefined:

MAE=
1
N
∑⃒

⃒Pobserved
i − Pestimated

i

⃒
⃒ (4)

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑(

Pobserved
i − Pestimated

i
)2
/
N

√

(5)

MAPE=
1
N
∑

⃒
⃒
⃒
⃒
⃒

Pobserved
i − Pestimated

i

Pobserved
i

⃒
⃒
⃒
⃒
⃒

(6)
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where Pestimated
i and Pobserved

i denote estimated and observed population
count for each unit i, respectively, which can represent either a grid (for
grid-level assessments) or a township (for township-level assessments);
N denotes either the number of grids in the testing dataset (for grid-level
assessments) or the number of townships in our study area (for
township-level assessments). The expression of R2 is shown as follows:

R2 =1 −
SSres

SStot
(7)

where SSres refers to the sum of squared residuals (i.e., differences) be-
tween the observed and estimated population counts and SStot to the
total variability of the observed population counts.

2.5. Uncertainty propagation analysis of the CGWNN model

The input population reference for model training was generated
using WorldPop-derived weights to redistribute township-level census
data, resulting in modified population grids that integrate information
from both WorldPop estimates and fine-scale census data (Zhuang et al.,
2021). Although these modified population grids are approximate

representations of real-world population distributions, uncertainties
remain primarily due to potential errors in WorldPop estimates. For
instance, previous studies reported that WorldPop misallocated around
20 % of the population onto unpopulated grids in urban areas (Thomson
et al., 2022). To quantify the potential uncertainties introduced by
WorldPop-derived weights, this study added random errors to these
weights for assessment (Dai et al., 2020):

Weightʹi =Weighti + ξi, ξi ∼ N
(

0,
(σ

3

)2
)

(8)

where Weight́i denotes the adjusted weight for grid i; Weighti denotes the
original weight for grid i; ξi denotes the normally distributed random
error with a mean of zero and a standard deviation set to one-third of the
standard deviation (i.e., σ) of the original weights. This approach en-
sures that the introduced noise reflects moderate variability without
excessively distorting the original weight distribution, thus simulating
deviations (i.e., errors of WorldPop estimates) observed in previous
studies (Thomson et al., 2022). After that, a new CGWNN model was
trained using the population reference generated with the adjusted
weights. This model was compared to the CGWNN model trained using

Fig. 4. Results of variable selection based on Boruta. “Density of x” denotes the density of the POIs of the category x, and “Distance to x” denotes the distance to the
nearest POI of the category x. ALAN, artificial light at night; NDVI, normalized difference vegetation index; POI, point of interest.

G. Qiu et al.



Applied Geography 182 (2025) 103708

7

the population reference with original weights. The difference per grid
between population products generated by the two models was quan-
tified as follows:

Difference=
⃒
⃒
⃒
⃒
Pʹ
i − PCGWNN

i

PCGWNN
i

⃒
⃒
⃒
⃒× 100% (9)

where PCGWNN
i denotes the population estimated by the original model;

Pí denotes the population estimated using the model trained with
adjusted weights. The accuracy of the CGWNN model trained by
adjusted weights was also assessed using metrics mentioned in section
2.4 and compared with other products, to demonstrate the robustness of
the findings.

2.6. Generalizability assessment of the CGWNN model

To further assess the generalizability of the proposed CGWNN model,
it was applied to estimate gridded population density in Shanghai, a
large city with relatively different population distributions and land use
patterns compared to Beijing. The accuracy of the resulting population
product was assessed by comparing it with census data in Shanghai at
the township level. Four well-known population datasets, including
WorldPop, GHS-POP, GPW, and LandScan Global, were also included in
the comparison to evaluate the relative accuracy and, thereby, the
generalizability of the CGWNN model.

Table 2
Characteristics of the variables in the sampling grids.

Variable (N = 3310) Mean Standard deviation Median Minimum Maximum

Dependent variable
Population (persons/ha)a 2.999 1.954 3.072 0.000 7.867

Independent variables
Density of companies (units/ha)a 0.174 0.506 0.000 0.000 5.075
Density of passing facilities (units/ha)a 0.192 0.420 0.000 0.000 2.639
Density of residential communities (units/ha)a 0.100 0.292 0.000 0.000 2.639
Density of schools (units/ha)a 0.126 0.392 0.000 0.000 3.664
Density of shopping services (units/ha)a 0.239 0.616 0.000 0.000 4.836
Density of transportation services (units/ha)a 0.188 0.450 0.000 0.000 2.485
Density of other addresses (units/ha)a 0.297 0.571 0.000 0.000 4.094
ALAN (nW/cm2/sr) 20.500 19.998 16.022 0.256 192.864
Elevation (m) 156.126 245.730 48.000 7.778 1606.670
Slope (◦) 8.221 7.975 5.090 0.000 46.546
NDVI 0.602 0.192 0.596 0.089 0.943
Distance to the nearest auto service (m) 1516.141 2512.074 527.340 22.071 24,880.700
Distance to the nearest bank (m) 1797.382 2972.794 614.879 17.500 29,598.400
Distance to the nearest company (m) 889.317 1960.655 209.750 10.000 24,840.900
Distance to the nearest daily life service (m) 921.060 1515.964 272.634 5.000 13,104.000
Distance to the nearest government building (m) 835.198 1648.030 341.009 16.036 25,254.400
Distance to the nearest hospital (m) 1227.613 2058.905 467.592 17.500 25,254.400
Distance to the nearest hotel (m) 1582.387 2468.532 666.559 11.381 24,669.700
Distance to the nearest toll station (m) 1608.179 4124.595 229.788 12.500 49,867.500
Distance to the nearest public facility (m) 1007.826 1803.577 403.567 16.036 24,394.700
Distance to the nearest residential community (m) 1228.403 2166.464 342.930 13.333 24,840.000
Distance to the nearest restaurant (m) 989.884 1537.111 361.902 5.000 13,940.100
Distance to the nearest passing facility (m) 4602.885 7958.118 1450.325 38.262 66,140.400
Distance to the nearest school (m) 1084.298 2081.430 325.423 10.000 24,693.100
Distance to the nearest shopping service (m) 836.242 1380.304 276.466 2.500 13,866.700
Distance to the nearest sport (m) 843.943 1528.712 370.168 2.500 23,220.300
Distance to the nearest transportation service (m) 697.142 1450.350 257.811 13.333 24,303.500
Distance to the nearest tourist attraction (m) 1475.825 2173.421 800.667 26.095 24,669.700
Distance to the nearest another address (m) 322.675 408.143 173.223 0.000 5034.830

ALAN, artificial light at night; NDVI, normalized difference vegetation index.
a Being transformed by ln(x+1).

Fig. 5. Boxplots depicting the performance of 10 CGWNN models and 10 GWNN models. CGWNN, contextualized geographically weighted neural network; GWNN,
geographically weighted neural network; MAE, mean absolute error; RMSE, root mean square error.

G. Qiu et al.



Applied Geography 182 (2025) 103708

8

3. Results

3.1. Characteristics of the selected variables

Based on the Boruta variable selection, unimportant variables were
discarded, such as densities of auto services, hotels, tourist attractions,
and banks (Fig. 4). Characteristics of the important variables used for
model training are shown in Table 2. Land use was also an important
variable with 27.34 % of the sampling grids located in residential par-
cels, 1.30 % in business offices, 0.85 % in commercial services, 4.38 % in
industrial parcels, 11.09 % on roads, 0.18 % in transportation stations,
1.45 % in airport facilities, 3.32 % in administrative parcels, 3.33 % in
educational parcels, 0.66 % in medical parcels, 1.21 % in sport and
cultural parcels, 11.54 % in park and greenspace, and 33.35 % in rural
areas.

3.2. Comparisons of different models

The performance of the OLS, GWR-LU, GWR, GWNN, and CGWNN
models was compared at the grid level. The GWR model was found to be
more accurate than the OLS model (R2 = 0.648 v.s. 0.484). The GWR-LU
model was found to be more accurate than the GWR model (R2 = 0.651
v.s. 0.648). The values of coefficients estimated by OLS, GWR, and GWR-
LU models are shown in Table S1–S3.

Average performance of the 10 GWNN models was found to be better
than the GWR-LU model (R2 = 0.654 v.s. 0.651). Average performance
of the 10 CGWNN models using land use as the contextual variable was
better than that of the 10 GWNN models using land use as an indepen-
dent variable (R2 = 0.679 v.s. 0.654). Boxplots of the 10 CGWNN and 10
GWNN models revealed similar results of higher accuracy of CGWNN
models (Fig. 5). During the model training phase, training loss and
validation loss of CGWNN models decreased more rapidly than that of
GWNN models as the number of epochs increased (Fig. 6). The Cohen’s
d values for CGWNN and GWNN models were 0.072 and 0.059,
respectively. Given such small and negligible differences between
training loss and validation loss, the CGWNN and GWNN models were
less likely to experience significant overfitting. The best among the 10
CGWNN models demonstrated higher accuracy compared to the best

among the 10 GWNN models (R2 = 0.686 v.s. 0.660) (Table 3 and Fig. 7).
These two best-performing models were subsequently used for visuali-
zation and population product comparison.

3.3. Comparisons of different population products

To assess relative accuracy of the population products generated by
different models, each product was aggregated at the township level and
compared with census population counts (Table 4 and Fig. 8). The GWR
model demonstrated higher accuracy than the OLS model (R2 = 0.795 v.
s. 0.562). The higher accuracy was found in the GWR-LU model
compared to the GWR model (R2 = 0.800 v.s. 0.795). The GWNN model
outperformed the GWR-LU model (R2 = 0.821 v.s. 0.800). The CGWNN
model achieved superior results compared to the GWNN model (R2 =

0.845 v.s. 0.821). Additionally, the population product generated by the
CGWNN model outperformed the other well-known population prod-
ucts, including WorldPop (R2 = 0.737), GHS-POP (R2 = 0.802), GPW
(R2 = 0.675), and LandScan Global (R2 = 0.664).

The gridded population maps generated by different models in cen-
tral Beijing can be found in Fig. 9. We also zoomed in on these maps
specifically around Tian’anmen Square, where typical areas exhibit
abrupt variations in population density and land use (Fig. 10). Tia-
n’anmen Square located in the center of Beijing, and several landmarks
such as the Forbidden City and Tian’anmen Square, have no residential

Fig. 6. Training and validation loss of 10 CGWNN and 10 GWNN models across epochs. CGWNN, contextualized geographically weighted neural network; GWNN,
geographically weighted neural network; MSE, mean square error.

Table 3
Performance of different models at the grid level.

Models MAE RMSE R2

OLS 62.711 125.165 0.484
GWR 40.085 78.428 0.648
GWR-LU 40.294 78.155 0.651
GWNN 39.178 76.757 0.660
CGWNN 38.531 73.297 0.686

CGWNN, contextualized geographically weighted neural network; GWNN,
geographically weighted neural network; GWR, geographically weighted
regression; GWR-LU, geographically weighted regression with land use as an
independent variable; MAE, mean absolute error (persons); OLS, ordinary least
squares; RMSE, root mean square error (persons).
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population; however, the surrounding residential areas in the center of
Beijing are highly populated. CGWNN model estimated lower popula-
tion density in those landmarks and higher population density in sur-
rounding residential areas, compared to the GWNN, GWR-LU, GWR, and
OLS models.

3.4. Evaluation of uncertainty propagation

Comparison between the CGWNN models trained with original and
adjusted weights (i.e., original weights with random errors) indicated

that more than 60 % of grids exhibited uncertainties below 100 %
(Fig. 11), suggesting a minimal impact of potential inaccuracies in
WorldPop-derived weights on the estimation results in urban areas
(Fig. 12). However, higher uncertainties were observed in rural areas,
likely due to the lower population densities, which resulted in smaller
denominators and thus amplified the relative uncertainties.

The estimated populations of the CGWNN model trained by the
adjusted weights with random errors were compared with observed
populations in the testing dataset and township-level census data.
Higher accuracy of this model (MAE = 39.091, RMSE = 75.201, R2 =

0.670) than the GWNN model (MAE = 39.178, RMSE = 76.757, R2 =

0.660) at the grid level was observed, demonstrating that potential er-
rors of WorldPop-derived weights have minimal impact on the perfor-
mance of the CGWNN model. At the township level, the CGWNN model
trained by the adjusted weights (MAE = 23,583.467, RMSE =

36,268.423, R2 = 0.837, MAPE = 0.525) also outperformed the GWNN
model (MAE = 22,795.125, RMSE = 37,676.904, R2 = 0.821, MAPE =

0.411) in terms of RMSE and R2 but showed worse MAE and MAPE. This
discrepancy arises because RMSE and R2 are more sensitive to larger
errors in highly populated urban areas, whereas MAE and MAPE are
more influenced by the errors in rural areas with smaller populations. As
this study focused on urban population mapping, RMSE and R2 could be
more suitable indicators.

3.5. Variable contributions in the CGWNN model

SHAP values demonstrated the associations between population
density and variables in the CGWNN model (Fig. 13). Among the
weighting variables, the contextual characteristics of grids (i.e., land
use) were found to be more influential than their spatial coordinates.
Most land use categories were generally associated with higher

Fig. 7. Scatterplots between the observed population and the estimated population in the testing dataset: (a) the contextualized geographically weighted neural
network (CGWNN) model, (b) the geographically weighted neural network (GWNN) model, (c) the geographically weighted regression model with land use as an
independent variable (GWR-LU), (d) the geographically weighted regression (GWR) model, (e) the ordinary least squares (OLS) regression model. MAE, mean
absolute error; RMSE, root mean square error.

Table 4
Relative accuracy of the population products at the township level.

MAE MAPE RMSE R2

Models
OLS 33,239.898 0.855 61,658.786 0.562
GWR 27,710.900 0.676 40,376.791 0.795
GWR-LU 27,187.691 0.654 39,839.486 0.800
GWNN 22,795.125 0.411 37,676.904 0.821
CGWNN 21,169.884 0.392 35,026.330 0.845

Other population products
WorldPop 26,748.056 0.481 45,680.829 0.737
GHS-POP 37,729.679 0.506 60,845.741 0.802
GPW 36,318.302 0.925 62,240.487 0.675
LandScan Global 31,934.568 0.835 51,518.883 0.664

CGWNN, contextualized geographically weighted neural network; GHS-POP,
Global Human Settlement Population Grid; GPW, Gridded Population of the
World; GWNN, geographically weighted neural network; GWR, geographically
weighted regression; GWR-LU, geographically weighted regression with land
use as an independent variable; MAE, mean absolute error (persons); MAPE,
mean absolute percentage error; OLS, ordinary least squares; RMSE, root mean
square error (persons).
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population density, whereas roads and rural areas were generally
associated with lower population density. For the independent vari-
ables, the three most important ones, were the distances to the nearest
school, restaurant, and auto service. These variables tended to be
negatively associated with population density, indicating that grids
closer to these amenities tend to have higher population densities. The
distances to the nearest POIs tended to be more influential than the
densities of POIs. Moreover, the association between ALAN and popu-
lation density was complex, as both positive and negative associations
between ALAN and population density were found. Elevation and slope
also exhibited non-monotonic relationships with population density. A
negative association was observed between NDVI and population
density.

3.6. Generalizability of the CGWNN model

When applied to Shanghai, the CGWNN model achieved the highest

accuracy among all evaluated products with the lowest MAE of
33,015.658 and RMSE of 44,784.591, as well as the highest R2 of 0.903,
indicating strong generalizability (Tables 5 and S4). In contrast,
WorldPop, GHS-POP, GPW, and LandScan Global exhibited lower ac-
curacies in terms of these metrics. However, regarding MAPE, the
CGWNN exhibited lower errors than GPW and LandScan Global, but
higher errors than WorldPop and GHS-POP (Fig. 14). This discrepancy
likely arises from the use of MSE as the loss function in the CGWNN
model, which places greater emphasis on minimizing errors in high-
population areas, whereas MAPE tends to highlight errors in low-
population regions. Collectively, the established CGWNN model ach-
ieved the highest overall performance across multiple metrics in
Shanghai, demonstrating relatively strong generalizability to new
geographic areas. The CGWNN model generated population maps and
the other population datasets in Shanghai are shown in Fig. 15.

Fig. 8. Scatterplots between the census population and the estimated population generated by (a) the contextualized geographically weighted neural network
(CGWNN) model, (b) the geographically weighted neural network (GWNN) model, (c) the geographically weighted regression model with land use as an independent
variable (GWR-LU), (d) the geographically weighted regression (GWR) model, (e) the ordinary least squares (OLS) regression model, (f) WorldPop, (g) GHS-POP, (h)
GPW, (i) LandScan Global. GHS-POP, Global Human Settlement Population Grid; GPW, Gridded Population of the World; MAE, mean absolute error; MAPE, mean
absolute percentage error; RMSE, root mean square error.
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4. Discussion

4.1. Summary of the key findings

This study developed a novel CGWNN model for gridded population
estimation in complex urban environments based on remote sensing,
social sensing, and land use data. CGWNN integrated ANN into GWR to
account for nonlinear and spatially varying associations between influ-
ential factors and population density. It also considered abrupt varia-
tions in these associations across proximate grids situated within
differing land-use parcels. Results showed that the population product

generated by our CGWNN model achieved higher accuracy than that of
GWNN, GWR-LU, GWR, and OLS models as well as the other well-known
population datasets, including WorldPop, GHS-POP, GPW, and Land-
Scan Global. The SHAP values indicated that the three most important
variables for population estimation were the distances to the nearest
school, restaurant, and auto service, all of which were negatively asso-
ciated with population density. The contextual characteristic (i.e., land
use) of grids was a more important weighting variable than their spatial
coordinates.

Fig. 9. Overview of gridded population maps generated by different models and the WorldPop, GHS-POP, GPW, and LandScan Global datasets in central Beijing,
China in 2020. CGWNN, contextualized geographically weighted neural network; GHS-POP, Global Human Settlement Population Grid; GPW, Gridded Population of
the World; GWNN, geographically weighted neural network; GWR, geographically weighted regression; GWR-LU, geographically weighted regression with land use
as an independent variable; OLS, ordinary least squares.
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4.2. Comparisons of the methods

Associations between influential factors and population density
varied spatially, as the GWR model, allowing local estimates of the as-
sociations, outperformed the OLS model that assumes globally unified
associations over the study area. After integrating ANN into GWR, the
GWNN model further considered nonlinear associations between influ-
ential factors and population density, thereby improving accuracy.

However, both GWR and GWNN models rely solely on the spatial
location of grids, disregarding the influence of contextual disparity on
the associations between influential factors and population density. In
complex urban environments, nearby grids may exhibit markedly
different associations between influential factors and population density
due to varying land uses across adjacent parcels. By using the contextual
attribute (i.e., land use) as weights for independent variables, the pro-
posed CGWNN model more exhaustively and explicitly estimated these

Fig. 10. Gridded population maps generated by different models around Tian’anmen Square, Beijing, China in 2020. CGWNN, contextualized geographically
weighted neural network; GWNN, geographically weighted neural network; GWR, geographically weighted regression; GWR-LU, geographically weighted regression
with land use as an independent variable; OLS, ordinary least squares.

Fig. 11. Cumulative probability curve of (a) per grid difference between CGWNN models trained by population reference with original weights and with adjusted
weights (i.e., original weights with random errors), (b) population density estimated by the two CGWNN models. CGWNN, contextualized geographically weighted
neural network.
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contextually varying associations, resulting in a faster convergence rate
during training and higher accuracy of population products. The key
advantage of CGWNN lies in its ability to capture nonlinear associations
between influential factors and population density (i.e., via neural net-
works), while also accounting for contextual variations in these associ-
ations (i.e., via the contextualized geographically weighted structure).
Compared to the previously proposed models that also combined ANN
with GWR (Du et al., 2020; Zhang et al., 2022), the CGWNN model in
this study stands out by not relying on the idealized and pre-defined
spatial weight matrix, thereby allowing more flexible spatial relation-
ships to fit complex geographical processes from a knowledge-driven
perspective (Feng et al., 2021). By incorporating contextual informa-
tion rather than relying solely on spatial coordinates, which are merely
surrogates for factors affecting associations, the CGWNN model offers a
more precise and context-aware estimation of population density.

The applicability and generalizability of the CGWNN model were
supported by our uncertainty and generalizability analyses. Results
demonstrated that relatively small uncertainties in the dependent vari-
able, population density, have minimal impact on the accuracy of the
model, indicating a relatively strong robustness of the CGWNN model.
Additionally, the model was successfully applied to generate the popu-
lation product in Shanghai, a city with relatively different population
distribution patterns compared to Beijing, where the model was trained.
Results showed that the CGWNN model outperformed well-known
population datasets, including WorldPop, GHS-POP, GPW, and Land-
Scan Global, highlighting the relatively strong generalizability and
usefulness of the CGWNN model across broader geographic areas.

4.3. Interpretations of variable contributions

Urban land use, representing the most extensive human modification
on Earth, reflects the socio-economic functions of urban parcels (Chen
et al., 2021), which are directly related to population distribution. This
is further supported by the improved accuracy of the GWR-LU model,
which included land use as an independent variable, compared to the
GWR model without it. Although land use is a direct and valuable factor
for population estimation, it typically provides information only at the
parcel level. However, residential parcels may contain retail stores and
public service facilities, while industrial parcels may include staff dor-
mitories or office buildings. As such, commonly available land use data
may not fully capture the detailed composition and functional diversity
within a parcel (Chen et al., 2021), thus limiting its ability to directly
represent population-related characteristics at the grid level. Never-
theless, land use still reflects the predominant socio-economic function
of a parcel to a considerable extent and thus provides contextual infor-
mation for the grids within it. This socio-economic context may better
serve as a contextual variable influencing the associations between
influential factors and population density, rather than being directly
used as an independent variable, for population estimation. This is
evidenced by the higher accuracy of the CGWNN model compared to the
GWNN model in this study. Previous studies have also indicated that
land use types can impact the relationships between influential factors
and population density (Wang et al., 2018), highlighting the importance
of incorporating land use as a contextual variable for more accurate
population estimation.

The top three most influential factors in the CGWNN model, identi-
fied by SHAP values, were the distances to the nearest school,

Fig. 12. The 100-m gridded population maps of all areas in Beijing, China in 2020: (a) generated by the CGWNN model, (b) generated by the CGWNN model using
adjusted weights with random errors, (c) percentage difference between the two models. CGWNN, contextualized geographically weighted neural network.
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restaurant, and auto service. These factors generally showed negative
associations with population density, suggesting that areas with better
access to these essential services and amenities tend to have higher
population densities. This finding is consistent with previous studies that
employed similar factors for population mapping (Qiu et al., 2020).
However, the densities of schools, restaurants, and auto services them-
selves were found to generally have negative associations with popula-
tion density. This may be because this study focused on estimating
residential populations, and areas with high densities of these amenities,
particularly in 100-m grids, might have limited residential space.
Among the POI-derived independent variables, the densities of certain

categories of POIs were excluded from population estimation based on
Boruta variable selection, as they were found to be unimportant for
population estimation in this study. Given the potential positioning
uncertainties of POI data, calculating POI density at a fine spatial scale
(i.e., 100m) may introduce inaccuracies in data representation, leading
to excessive noise or errors that could reduce their relevance for popu-
lation estimation (Yeow et al., 2021).

The association between ALAN and population density was complex,
as both positive and negative associations between ALAN and popula-
tion density were found. While ALAN is typically positively associated
with population density when using large analysis units (e.g., counties

Fig. 13. Associations between population density and variables calculated by SHapley Additive exPlanations (SHAP) based on the contextualized geographically
weighted neural network model: (a) weighting variables (i.e., longitude, latitude, and land use), (b) independent variables. The variable importance ranking is based
on the sum of SHAP magnitudes. “Density of x” denotes the density of the POIs of the category x, and “Distance to x” denotes the distance to the nearest POI of the
category x. ALAN, artificial light at night; NDVI, normalized difference vegetation index; POI, point of interest.
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or larger administrative units) (Tan et al., 2018; Wang et al., 2018), this
association may not hold at finer scales (e.g., 100m or finer). This is
because, at larger spatial units, local variations tend to be averaged out,
and ALAN primarily captures the general intensity of human activities,
which closely related to population distribution. However, at finer
scales, ALAN intensity is influenced by more localized and diverse fac-
tors beyond residential population density, such as commercial activities
and transportation infrastructure (Wu et al., 2024), implying that areas
with strong illumination can also have low population density. Simi-
larly, higher values of elevation and slope were not necessarily associ-
ated with lower population density in this study, which differs from
previous studies conducted over broad regions (Tremblay & Ainslie,
2021). This is likely because our study focuses on urban population
estimation within a relatively small area, where variations in topog-
raphy could be limited. Moreover, NDVI was negatively associated with
population density, consistent with previous studies (Dobbs et al., 2017;
Zhang et al., 2021), indicating its reliability in estimating population
density.

4.4. Strengths and limitations

This study has three major advantages. First, a novel CGWNN was
developed for gridded population estimation based on the nonlinear and
spatially varying associations between influential factors and population
density. The model also accounted for abrupt variations in these asso-
ciations across nearby parcels. Such variations typically occur in com-
plex urban environments, where rapid changes in land use can lead to
substantial shifts in population density over short distances. Second, this
study utilized publicly available land use data, EULUC-China, to account
for the socio-economic functions of urban parcels that are relevant to
population distribution. As EULUC-China data cover impervious sur-
faces throughout the country, our method can be extended to larger
areas for more accurate population estimation. Third, this study directly
used fine-scale samples to produce the gridded population product
covering the study area, employing an approach that did not require
census data for top-down disaggregation (Wardrop et al., 2018). As the
national census is often conducted every 10 years in most countries, and
could be even inaccessible in resource-poor settings, using such a
method could be more feasible to estimate population distribution for
broader use (Leasure et al., 2020).

There were also limitations in this study. First, population density in
sampling grids for model training contained uncertainties (Zhuang et al.,
2021). While our uncertainty analysis indicated that these inaccuracies
had a minimal impact on the results, it would be preferred to use more
accurate measures — such as micro-census data collected through
household surveys — to obtain fine-scale population density for popu-
lation estimation. Second, while the CGWNN model demonstrated
relatively strong generalizability in data-rich environments like
Shanghai, the applicability of the model in data-scarce areas, particu-
larly in Global South cities with prevalent informal settlements and
irregular land use patterns, requires further validation. Future studies
could leverage more satellite-derived ancillary data to enhance

Table 5
Relative accuracy of the population products at the township level in Shanghai.

Datasets MAE MAPE RMSE R2

CGWNN 33,015.658 0.693 44,784.591 0.903
WorldPop 36,097.446 0.562 49,690.096 0.893
Global Human Settlement

Population Grid
45,086.691 0.397 64,623.873 0.890

Gridded Population of the World 42,139.426 0.766 56,933.810 0.848
LandScan Global 52,771.033 0.913 72,923.586 0.831

CGWNN is the contextualized geographically weighted neural network model
trained in Beijing. MAE, mean absolute error (persons); MAPE, mean absolute
percentage error; RMSE, root mean square error (persons).

Fig. 14. Scatterplots between the census population and the estimated population in Shanghai generated by (a) the contextualized geographically weighted neural
network (CGWNN) model (trained in Beijing), (b) WorldPop, (c) GHS-POP, (d) GPW, (e) LandScan Global. GHS-POP, Global Human Settlement Population Grid;
GPW, Gridded Population of the World; MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE, root mean square error.
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modeling applicability in these areas. For instance, satellite-based slum
mapping could be used to capture informal settlements (Verma et al.,
2019), while high-resolution satellite imagery could facilitate land use
classification (Zhou et al., 2020), providing relatively detailed land use
categories for CGWNN-based population estimation. Third, this study
only considered land use as a contextual variable, but other factors, such
as crime rates and pollutant concentrations, could also lead to abrupt
variations in the associations between influential factors and population
density across nearby parcels. Future studies could incorporate these
contextual variables as needed to better estimate population distribu-
tion. Fourth, the EULUC-China dataset reflected land use in 2018, which
was not aligned with targeting population estimates in 2020, leading to
potential uncertainties. However, as land use and its associated
socio-economic patterns tend to remain stable over short periods,
especially in developed cities like Beijing (Mulligan, 2013), the extent of
such uncertainties is likely to be minimal. Fifth, the POI data were ac-
quired from Amap, which is one of the largest web map service providers
in China, offering freely accessible and reliable POIs. The dataset has
been widely utilized for population estimation in China (Chen et al.,
2024). Although Amap data have also been available in some other
countries, future research should consider using more extensive data-
sets, such as Foursquare or Overture POIs, to further enhance model
applicability across different regions.

4.5. Usefulness of gridded population data

Spatially accurate population data are vital for understanding and
responding to various social, economic, and environmental issues
(Elvidge et al., 1997; Rahman & Alam, 2021). The high-resolution
gridded population datasets generated by our modeling approach

provide standardized, georeferenced cells of population density, which
are essential for effective planning and resource allocation across mul-
tiple fields. For instance, in urban planning, population data enable
more informed decisions regarding infrastructure development (Shi
et al., 2020), such as greenspace planning, as areas with higher popu-
lation density may require larger public spaces to meet the needs of
residents (Wu et al., 2023). Additionally, analyzing population data can
inform emergency response strategies, enabling authorities to allocate
resources more effectively during natural disasters or public health
emergencies (Martins, 2021; Smith et al., 2019). Overall, the availability
of high-resolution population data enhances the capacity for targeted
interventions and sustainable development practices.

5. Conclusion

This study developed a novel CGWNN model to estimate population
density at the grid level in urban areas, based on remote sensing, social
sensing, and land use data. The CGWNN captured the nonlinear and
spatially varying associations between influential factors and population
density, and allowed them to differ by land-use contexts across grids. It
outperformed other models that ignored such contextual heterogene-
ities, demonstrating the benefits of integrating spatial contexts into
population estimation. The most important variables in the CGWNN
model were the distances to the nearest school, restaurant, and auto
service, all of which were negatively associated with population density.
Additionally, ALAN intensity showed both positive and negative asso-
ciations with population density in different regions, suggesting that
increased ALAN did not necessarily indicate higher population density
in urban areas. Our modeling method has potential to accurately esti-
mate complex urban population distribution and, more broadly, other

Fig. 15. The 100-m gridded population maps of Shanghai city, China in 2020: (a) generated by the CGWNN model (trained in Beijing), (b) WorldPop, (c) GHS-POP,
(d) GPW, (e) LandScan Global datasets. CGWNN, contextualized geographically weighted neural network; GHS-POP, Global Human Settlement Population Grid;
GPW, Gridded Population of the World.
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spatial occurrences that exhibit contextually heterogeneous distribu-
tions, such as the gross domestic product and carbon emissions, which
holds promise for various fields depending on these essential data.
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