Coding and Paper Letter(十二)
资源整理。
1 Coding:
1.R语言生成的ppt,GeoStat2018会议报告,时空模式分析的报告。
2.欧空局哨兵和SMOS的工具集,关于对地观测数据的处理与分析的docker容器。
3.R语言包ggmapstyles,一个R包可以切换各种不同风格的地图。
4.地理空间的docker镜像并且打包成AWS(亚马逊云服务器)的linux系统。
5.R语言包ggrastr,ggplot2的拓展包,专门针对栅格几何图形。
6.一系列关于使用Google Earth Engine(GEE)的工具(javascript)。
7.R语言教程展示如何构建一个简单的ABM模型。
cultural evolution ABM tutorial
8.基于Python API的Google Earth Engine(GEE)的最佳可获取像素组合。
9.R语言包caiman,冠层照片分析。
10.R语言包imager,专门用做图像处理的R包。
11.基于neo4j的推荐引擎模块。
12.高性能,易用且可扩展的机器学习包(C ++,Python,R)。
13.将光线应用到rgl的绝对坐标上。
14.将shapefile转换为json文件。
15.基于R的贝叶斯分析模板。
16.R语言包autoxgboost,自动调整和安装xgboost的R包。
2 Paper:
为了解空气污染对健康的影响,一个非常普遍的流行病学研究是可用的暴露数据质量。许多流行病学研究依赖于经验建模技术,例如土地利用回归(LUR)来评估环境空气暴露。以前的研究已经以临时的方式定位监测站,有利于它们在交通“热点”中的位置,或者在主观上被认为对土地使用和人口感兴趣的区域。然而,监测站的临时安置可能导致长期暴露分析的不明智决定。本文介绍了一种识别空气质量监测站位置的系统方法。它结合了LUR的灵活性和将权重放在优先区域(如人口密集区域)的能力,以最小化空间平均预测误差。在研究区域测试方法已经表明它导致平均预测误差的显着下降(没有空间权重的情况下为99.87%;在研究区域中具有空间权重的99.94%)。这项工作的结果可以指导网站的选择,同时扩展或创建空气质量监测网络,以实现稳健的LUR估算,同时将预测误差降至最低。土地利用回归模型是一个比较常用的环境大气污染监测建模模型。这篇文章不仅仅是从模型角度对模型改进,还针对空气质量监测网络做了优化。
蒸散(ET)的划分是陆地水平衡和全球水循环的关键因素,了解陆地生物群落的划分以及ET划分与潜在影响因素之间的关系对于预测未来的生态系统反馈至关重要。基于优化的Priestly-Taylor喷射推进实验室模型,我们将ET分为三个组成部分蒸腾(T),冠层拦截蒸发(EI)和土壤蒸发(ES)。我们发现EI的成分是显着的,不同生物群落中EI与降水的比率在0.02到0.29之间。 T / ET比率范围为0.29至0.72,生物群落之间存在明显差异,且比率通常低于先前使用同位素方法的研究。 (T + EI)/ ET比率被限制在从0.57到0.86的相对窄的范围内。随着年降水量的增加,T / ET值呈明显下降趋势,但T / ET与年叶面积指数之间无显着相关性。蒸散是生态系统中很关键的一个组成,近些年来很多研究都是针对ET的。这个文章将ET更好地与生物群落结合在一起,值得一度,发表在农林科学top期刊Agricultural and Forest Meteorology上。